The effects of drag reducing polymers on flow stability : Insights from the Taylor-Couette problem

  • Dutcher, Cari S. (Department of Chemical Engineering, University of California) ;
  • Muller, Susan J. (Department of Chemical Engineering, University of California)
  • Published : 2009.12.31

Abstract

Taylor-Couette flow (i.e., flow between concentric, rotating cylinders) has long served as a paradigm for studies of hydrodynamic stability. For Newtonian fluids, the rich cascade of transitions from laminar, Couette flow to turbulent flow occurs through a set of well-characterized flow states (Taylor Vortex Flow, wavy Taylor vortices, modulated wavy vortices, etc.) that depend on the Reynolds numbers of both the inner and outer cylinders ($Re_i$ and $Re_o$). While extensive work has been done on (a) the effects of weak viscoelasticity on the first few transitions for $Re_o=0$ and (b) the effects of strong viscoelasticity in the limit of vanishing inertia ($Re_i$ and $Re_o$ both vanishing), the viscoelastic Taylor-Couette problem presents an enormous parameter space, much of which remains completely unexplored. Here we describe our recent experimental efforts to examine the effects of drag reducing polymers on the complete range of flow states observed in the Taylor-Couette problem. Of particular importance in the present work is 1) the rheological characterization of the test solutions via both shear and extensional (CaBER) rheometry, 2) the wide range of parameters examined, including $Re_i$, $Re_o$ and Elasticity number E1, and 3) the use of a consistent, conservative protocol for accessing flow states. We hope that by examining the stability changes for each flow state, we may gain insights into the importance of particular coherent structures in drag reduction, identify simple ways of screening new drag reducing additives, and improve our understanding of the mechanism of drag reduction.

Keywords

References

  1. Andereck, C. D., S. S. Liu and H. L. Swinney, 1986, Flow regimes in a circular couette system with independently rotating cylinders, J. Fluid Mech. 164, 155-183 https://doi.org/10.1017/S0022112086002513
  2. Baumert, B.M., and S. J. Muller, 1995, Flow Visualization of the Elastic Taylor-Couette Instability in Boger Fluids, Rheologica Acta 34, 147-159 https://doi.org/10.1007/BF00398434
  3. Baumert, B.M., S. J. Muller and D. Liepmann, 1997a, Digital particle image velocimetry in flows with nearly closed pathlines: the viscoelastic taylor-couette instability, J. Non-Newtonian Fluid Mech. 69, 221-237 https://doi.org/10.1016/S0377-0257(96)01538-8
  4. Baumert, B. M. and S. J. Muller, 1997b, Flow regimεs in model viscoelastic fluids in a circular couette system with independently rotating cylinders, Phys. Fluids 9, 566-586 https://doi.org/10.1063/1.869209
  5. Baumert, B.M. and S.J. Muller, 1999, Axisymmetric and nonaxisymmetric elastic and inertio-elastic instabilities in taylorcouette flow, J. Non-Newtonian Fluid Mech. 83, 33-69 https://doi.org/10.1016/S0377-0257(98)00132-3
  6. Cole, J. A., 1976, Taylor-vortex instability and annulus-length effects, J. Fluid Mech. 75, 1-15 https://doi.org/10.1017/S0022112076000098
  7. Coles, D., 1965, Transition in circular couette flow, J. Fluid Mech. 21, 385-425 https://doi.org/10.1017/S0022112065000241
  8. Coles, D., 1967, A note on Taylor instability in circular couette flow, J. Appl. Mech. 34, 529-532 https://doi.org/10.1115/1.3607738
  9. Crumeyrolle, O., I. Mutabazi and M. Grisel, 2002, Experimental study of inertioelastic Couette-Taylor instability modes in dilute and semidilute polymer solutions, Phys. Fluids 14, 1681-1688 https://doi.org/10.1063/1.1466837
  10. Denn, M.M. and J. J. Roisman, 1969, Rotational stability and measurement of normal stress functions in dilute polymer solutions, AIChE J. 15, 454 -459 https://doi.org/10.1002/aic.690150328
  11. Di Prima, R.C. and H.L. Swinney, 1985, Instabilities and transition in flow between concentric rotating cylinders, in Hydrodynamic Instabilities and the Transition to Turbulence, 2nd ed., H.L. Swinney and J.P. Gollub, editors, Springer-Verlag, Berlin
  12. Dutcher, C. S., 2009, Experimental investigations into the transitions to turbulence in newtonian and drag-reducing polymeric taylor-couette flows, Ph.D. Dissertation, University of California, Berkeley
  13. Dutcher, C. S. and S.J. Muller, 2007, Explicit analytic formulas for newtonian taylor-couette primary instabilities, Phys. Rev. E 75, 047301 https://doi.org/10.1103/PhysRevE.75.047301
  14. Dutcher, C. S. and S.J. Muller, 2009a, Spatio-temporal mode dynamics and higher order transitions in high aspect ratio Newtonian Taylor-Couette flows, J. Fluid Mech. 641, 85-113 https://doi.org/10.1017/S0022112009991431
  15. Dutcher, C. S. and S.J. Muller, 2009b, Effects oflow elasticity on the stability of high Reynolds number co- and counter-rotating Taylor-Couette flows, in preparation
  16. Esser, A. and S. Grossmann, 1996, Analytic expression for taylor- couette stability boundary, Phys. Fluids. 8, 1814-1819 https://doi.org/10.1063/1.868963
  17. Giesekus, H., 1966, Zur stabilit$\ddot{a}$t von strTEX>$\ddot{o}$mungen viskoelastischer flTEX>$\ddot{u}$ssigkeiten: 1. ebene und kreisfTEX>$\ddot{o}$rmige couettestrTEX>$\ddot{o}$mung, Rheol. Acta 5, 239-252 https://doi.org/10.1007/BF01982435
  18. Giesekus, H., 1972, On instabilities in poiseuille and couette flows of viscoelastic fluids, in Progress in Heat and Mass Transfer, 5, ed. W. R. Schowalter, A. V. Luikov, W. J. Minkowycz, and N.H. Afgan, Permagon, NY, pp. 187-193
  19. Ginn, R.F. and M.M. Denn, 1969, Rotational stability in viscoelastic liquids: theory, AIChE Journal 15, 450-454 https://doi.org/10.1002/aic.690150327
  20. Groisman, A. and V. Steinberg, 1996, Couettε-Taylor flow in a dilute polymer solution, Phys. Rev. Lett. 77, 1480-1483 https://doi.org/10.1103/PhysRevLett.77.1480
  21. Groisman, A., and V. Steinberg, 1997, Solitary vortex pairs in viscoelastic couette flow, Phys. Rev. Lett 78, 1460-1463 https://doi.org/10.1103/PhysRevLett.78.1460
  22. Groisman, A., and V. Steinberg, 1998, Mechanism of elastic instability in couette flow of polymer solutions: experiment, Phys Fluids 10, 2451-2463 https://doi.org/10.1063/1.869764
  23. Haas, R. and K. B$\ddot{u}$hler, 1989, Einflu$\beta$ nichtnewtonsher stoffeigenschaften auf die taylor-wirbelstr$\ddot{o}$mung, Rheol Acta 28, 402-413 https://doi.org/10.1007/BF01336807
  24. Koschmieder, E. L., 1993, B$\acute{e}$nard cells and Taylor vortices, Cambridge University Press, Cambridge
  25. Larson, R. G., 1992, Instabilities in viscoelastic flows, Rheologica Acta 31, 213-263 https://doi.org/10.1007/BF00366504
  26. Muller, S.J., 2008, Elastically-influenced instabilities in Taylor-Couette and other flows with curved streamlines: a review, Korea-Australia Rheology J. 20, 117-125
  27. Petrie, C.J.S. and M.M. Denn, 1976, Instabilities in polymer processing, AIChE J. 22, 209-236 https://doi.org/10.1002/aic.690220202
  28. Rubin, H. and C. Elata, 1966, Stability of couette flow of dilute polymer solutions, Phys. Fluids 9,1929-1933 https://doi.org/10.1063/1.1761545
  29. Shaqfeh, E. S.G., 1996, Purely elastic instabilities in viscometric flows, Annual Rev. Fluid Mech., 28, 129-185 https://doi.org/10.1146/annurev.fl.28.010196.001021
  30. Tagg, R., 1994, The couette-taylor problem, Nonlinear Sci. Today 4, 2-25
  31. Thomas, D.G., B. Khomami and R. Sureshkumar, 2009, Nonlivear dynamics of viscoelastic taylor-couette flow: effect of elasticity on pattern selection, molecular conformation, and drag, J. Fluid Mech. 620, 353-382 https://doi.org/10.1017/S0022112008004710
  32. Thomas, D.G., R. Sureshkumar, and B. Khomami, 2006, Pattern formation in taylor-couette flow of dilute polymer solutions: dynamical simulations and mechanism, Phys. Rev. Lett. 97, 054501 https://doi.org/10.1103/PhysRevLett.97.054501
  33. Thomas, D.G., U.A. AI-Mubaiyedh, R. Sureshkumar and B. Khomami, 2006, Time-dependent simulations of non-axisymmetric patterns in taylor-couette flow of dilute polymer solutions, J. Non-Newtonian Fluid Mech. 138, 111-133 https://doi.org/10.1016/j.jnnfm.2006.04.013
  34. Walden, R. W. and R.J. Donnelly, 1979, Reemergent order of chaotic circular Couette flow, Phys. Rev. Lett. 42, 301-304 https://doi.org/10.1103/PhysRevLett.42.301
  35. White, J.M., 2002, Experimental Investigation of Instabilities in Newtonian and Viscoelastic Taylor-Couette Flows, Ph.D. Dissertation, University of Califomia, Berkeley
  36. White, J.M. and S.J. Mullεr, 2002a, Experimental studies on the stability of newtonian taylor-couette flow in the presence of viscous heating, J. Fluid Mech. 462, 133-159
  37. White, J.M. and S.J. Muller, 2002b, The role of thermal sensitivity of fluid properties, centrifugal destabilization, and nonlinear disturbances on the viscous heating instability in newtonian taylor-couette flow, Phys. Fluids 14, 3880-3890 https://doi.org/10.1063/1.1509067
  38. White, J.M. and S.J. Muller, 2003, Experimental studies on the effiect of viscous heating on the hydrodynamic stability of viscoelastic taylor-couette flow, J. Rheol. 47, 1467-1492 https://doi.org/10.1122/1.1621423
  39. Yi, M.K. and C. Kim, 1997, Experimental studies on the taylor instability of dilute polymer solutions, J. Non-Newtonian Fluid Mech. 72, 113-139 https://doi.org/10.1016/S0377-0257(97)00032-3