• Title/Summary/Keyword: vibration modes

Search Result 1,277, Processing Time 0.026 seconds

Vibration Characteristics of Tires for Light-duty Truck under Free Suspension (자유상태에서 경상용차용 타이어의 진동특성)

  • 김용우;최동수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.49-56
    • /
    • 2000
  • Due to the rapid increase of long-distance transportation, particular attentions have been paid to truck tires, especially to their dynamic characteristics. In this research, experimental modal analysis on two kinds of light-duty truck tires, i.e., radial tire and bias tire, are performed by using GRFP(global rational fraction polynomial) method to investigate differences of the dynamic behavior of the two tires. The test results have shown that the modal frequencies of bias tire are much higher than the corresponding values of radial tire with a similar mode shape, which is in accordance with the fact that the radial rigidity of bias tire is higher than that of radial tire. And most of the modal decay rates of bias tire are larger than those of radial tire within the scope of this experiment. In the frequency domain range of test, the bias tire has extra modes, which do not occur in the radial tire. This difference is based on the fact that the circumferential rigidity of the bias tire is quire low whereas that of radial tire is so high that the frequencies of the corresponding modes are out of the frequency range of test.

  • PDF

On the Growth and Properties of GaP Single Crystals (GaP 단결정의 성장과 특성에 관하여)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.50-53
    • /
    • 1992
  • The GaP crystals are growth by Synthesis Solute Diffusion(SSD) method and its properties are investigated. Etch pits density along vertical direction of ingot is increased from 3.8${\times}$10$^4$cm$\^$-2/ of first freeze to 2.3${\times}$10$\^$5/cm$\^$-2/ of last freeze part. The carrier concentration and mobilities are measured to 197.49$\textrm{cm}^2$/V. sec and 6.75${\times}$10$\^$15/cm$\^$-3/ at room temperature. The temperature dependence of optical energy gap is empilically fitted to E$\_$g/(T)=2.3383-(6.082${\times}$10$\^$-4/T${\times}$/(373.096+T)[eV]. Photo-luminescence spectra measured at low temperature are consist with sharp line-spectra near band-gap energy and radiative recombination between shallow Si-donor to Zn-acceptor and its phonon reprica, and broad emission. The infrared absorption in GaP is cause to phonon coupling modes of TO, LO, LA, TA$_1$, TA$_2$and vibration modes of Ga$_2$O, Si-donor and Zn-acceptor, respectively.

  • PDF

A Study on Indirect-Direct Bandgap Structures of 2D-layered Transition Metal Dichalcogenides by Laser Etching (2차원 층상 구조 전이금속 칼코겐화합물의 레이저 식각에 의한 직접-간접 띠간격 구조 연구)

  • Moon, Eun-A;Ko, Pil-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.576-580
    • /
    • 2016
  • Single-layered transition metal dichalcogenides (TMDs) exhibit more interesting physical properties than those of bulk TMDs owing to the indirect to direct bandgap transition occurring due to quantum confinement. In this research, we demonstrate that layer-by-layer laser etching of molybdenum diselenide ($MoSe_2$) flakes could be controlled by varying the parameters employed in laser irradiation (time, intensity, interval, etc.). We observed a dramatic increase in the photoluminescence (PL) intensity (1.54 eV peak) after etching the samples, indicating that the removal of several layers of $MoSe_2$ led to a change from indirect to direct bandgap. The laser-etched $MoSe_2$ exhibited the single $MoSe_2$ Raman vibration modes at ${\sim}239.4cm^{-1}$ and ${\sim}295cm^{-1}$, associated to out-of-plane $A_{1g}$ and in-plane ${E^1}_{2g}$ Raman modes, respectively. These results indicate that controlling the number of $MoSe_2$ layers by laser etching method could be employed for optimizing the performance of nano-electronic devices.

Seismic Behavior of Rotation Shaft System at Start-up (기동시 회전축계의 지진응답 거동)

  • 김상환
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • A rotating shaft system subjected to seismic motions has been investigated for the various operating modes at start-up. During an earthquake excitation, the rotor may hit the stator of machines due to the excessive deformation of shaft, and thus the response of rotating shaft system of which foundation is supported by the vibration isolation devices has been simulated. In order to examine the transient response of the rotating shaft system at the start-up to both the various operating conditions and the seismic excitation simultaneously, nonlinear equations of motion are derived and solved numerically using Runge-Kutta method. The response of the rotating shaft system is calculated according to the operating modes as recommended by the machine and the system parameters such as the spring stiffness of isolation devices.

  • PDF

Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach

  • Poplawski, Blazej;Mikulowski, Grzegorz;Pisarski, Dominik;Wiszowaty, Rafal;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • This paper proposes a quantitative criterion for optimization of actuator placement for the Prestress-Accumulation Release (PAR) strategy of mitigation of vibrations. The PAR strategy is a recently developed semi-active control approach that relies on controlled redistribution of vibration energy into high-order modes, which are high-frequency and thus effectively dissipated by means of the natural mechanisms of material damping. The energy transfer is achieved by a controlled temporary removal of selected structural constraints. This paper considers a short-time decoupling of rotational degrees of freedom in a frame node so that the bending moments temporarily cease to be transferred between the involved beams. We propose and test a quantitative criterion for placement of such actuators. The criterion is based on local modal strain energy that can be released into high-order modes. The numerical time complexity is linear with respect to the number of actuators and potential placements, which facilitates quick analysis in case of large structures.

Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles

  • Zeferino, Raul Sanchez;Pal, Umapada;Reues, Ma Eunice De Anda;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • Well-crystalline $SnO_2$ nanoparticles of 4-5 nm size with different In contents were synthesized by hydrothermal process at relatively low temperature and characterized by transmission electron microscopy (TEM), microRaman spectroscopy and photoluminescence (PL) spectroscopy. Indium incorporation in $SnO_2$ lattice is seen to cause a lattice expansion, increasing the average size of the nanoparticles. The fundamental phonon vibration modes of $SnO_2$ lattice suffer a broadening, and surface modes associated to particle size shift gradually with the increase of In content. Incorporation of In drastically enhances the PL emission of $SnO_2$ nanoparticles associated to deep electronic defect levels. Although In incorporation reduces the band gap energy of $SnO_2$ crystallites only marginally, it affects drastically their dye degradation behaviors under UV illumination. While the UV degradation of methylene blue (MB) by undoped $SnO_2$ nanoparticles occurs through the production of intermediate byproducts such as azure A, azure B, and azure C, direct mineralization of MB takes place for In-doped $SnO_2$ nanoparticles.

Behaviors of novel sandwich composite beams with normal weight concrete

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.599-615
    • /
    • 2021
  • The ultimate strength behaviour of sandwich composite beams with J-hooks and normal weight concrete (SCSSBJNs) are studied through two-point loading tests on ten full-scale SCSSBJNs. The test results show that the SCSSBJN with different parameters under two-point loads exhibits three types of failure modes, i.e., flexure, shear, and combined shear and flexure mode. SCSSBJN failed in different failure modes exhibits different load-deflection behaviours, and the main difference of these three types of behaviours exist in their last working stages. The influences of thickness of steel faceplate, shear span ratio, concrete core strength, and spacing of J-hooks on structural behaviours of SCSSBJN are discussed and analysed. These test results show that the failure mode of SCSSBJN was sensitive to the thickness of steel faceplate, shear span ratio, and concrete core strength. Theoretical models are developed to estimate the cracking, yielding, and ultimate bending resistance of SCSSBJN as well as its transverse cross-sectional shear resistance. The validations of predictions by these theoretical models proved that they are capable of estimating strengths of novel SCSSBJNs.

Direct strength measurement of Timoshenko-beam model: Vibration analysis of double walled carbon nanotubes

  • Ghandourah, Emad;Hussain, Muzamal;Thobiani, Faisal Al;Hefni, Mohammed;Alghamdi, Sami
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.77-83
    • /
    • 2022
  • In the last ten years, many researchers have studied the vibrations of carbon nanotubes using different beam theories. The nano- and micro-scale systems have wavy shape and there is a demand for a powerful tool to mathematically model waviness of those systems. In accordance with the above mentioned lack for the modeling of the waviness of the curved tiny structure, a novel approach is employed by implementing the Timoshenko-beam model. Owing to the small size of the micro beam, these structures are very appropriate for designing small instruments. The vibrations of double walled carbon nanotubes (DWCNTs) are developed using the Timoshenko-beam model in conjunction with the wave propagation approach under support conditions to calculate the fundamental frequencies of DWCNTs. The frequency influence is observed with different parameters. Vibrations of the double walled carbon nanotubes are investigated in order to find their vibrational modes with frequencies. The aspect ratios and half axial wave mode with small length are investigated. It is calculated that these frequencies and ratios are dependent upon the length scale and aspect ratio.

Modal Analysis of Plate by Substructure Synthesis Method (부분구조합성법을 이용한 판의 모우드해석)

  • Jung, Jae-Hoon;Jee, Tae-Han;Park, Young-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.65-74
    • /
    • 1994
  • Various substructure synthesis methods, such as component mode synthesis, building block analysis and reduced impedance method, are studied for the determination of vibration characteristics of plate problems. Comparisons are made for each methods in terms of accuracy and computational efficiency. Following conclusions are made from the results of computer simulations and experiments. i) The computation time of component mode synthesis is much shorter than that of whole structure analysis. The natural frequencies of lower modes obtained from component mode synthesis are almost same as those obtained from whole structure analysis, but in higher modes the differences between those two methods are increases. ii) The transfer function obtained from building block analysis is same as that obtained from the finite element method. iii) Same transfer functions can be obtained by the reduced impedance method. The computation time of reduced impedance mathod is shorter that that of general finite element method, but for the solutions in broad frequency band it requires long calculation time.

  • PDF

Theoretical Calculations of Infrared Bands of CH3+ and CH5+

  • Matin, Mohammad A.;Jang, Joonkyung;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2051-2055
    • /
    • 2013
  • Existing theoretical calculations predict that infrared spectra of the two most fundamental reactive carbo-ions, methyl cation $CH{_3}^+$ with $D_{3h}$ symmetry and protonated methyl cation $CH{_5}^+$ with $C_s(I)$, $C_s(II)$, and $C_{2v}$ symmetries, appear together in the 7-${\mu}m$ region corresponding to the C-H bending modes. Vibrational band profiles of $CH{_3}^+$ and $CH{_5}^+$ have been compared by ab initio calculation methods that use the basis sets of MP2/aug-cc-pVTZ and CCSD(T)/cc-pVTZ. Our results indicate that the bands of rotation-vibration transitions of $CH{_3}^+$ and $CH{_5}^+$ should overlap not only in the 3-${\mu}m$ region corresponding to the C-H stretching modes but also in the 7-${\mu}m$ region corresponding to the C-H bending modes. Five band intensities of $CH{_5}^+$ among fifteen vibrational transitions between 6 and 8 ${\mu}m$ region are stronger than those of the ${\nu}_2$ and ${\nu}_4$ bands in $CH{_3}^+$. Ultimate near degeneracy of the two bending vibrations ${\nu}_2$ and ${\nu}_4$ of $CH{_3}^+$along with the stronger intensities of $CH{_5}^+$ in the three hydrogen scrambling structures may cause extreme complications in the analysis of the high-resolution carbo-ion spectra in the 7-${\mu}m$ region.