DOI QR코드

DOI QR Code

Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach

  • Poplawski, Blazej (Institute of Fundamental Technological Research, Polish Academy of Sciences) ;
  • Mikulowski, Grzegorz (Institute of Fundamental Technological Research, Polish Academy of Sciences) ;
  • Pisarski, Dominik (Institute of Fundamental Technological Research, Polish Academy of Sciences) ;
  • Wiszowaty, Rafal (Institute of Fundamental Technological Research, Polish Academy of Sciences) ;
  • Jankowski, Lukasz (Institute of Fundamental Technological Research, Polish Academy of Sciences)
  • Received : 2018.10.09
  • Accepted : 2019.03.04
  • Published : 2019.07.25

Abstract

This paper proposes a quantitative criterion for optimization of actuator placement for the Prestress-Accumulation Release (PAR) strategy of mitigation of vibrations. The PAR strategy is a recently developed semi-active control approach that relies on controlled redistribution of vibration energy into high-order modes, which are high-frequency and thus effectively dissipated by means of the natural mechanisms of material damping. The energy transfer is achieved by a controlled temporary removal of selected structural constraints. This paper considers a short-time decoupling of rotational degrees of freedom in a frame node so that the bending moments temporarily cease to be transferred between the involved beams. We propose and test a quantitative criterion for placement of such actuators. The criterion is based on local modal strain energy that can be released into high-order modes. The numerical time complexity is linear with respect to the number of actuators and potential placements, which facilitates quick analysis in case of large structures.

Keywords

Acknowledgement

Supported by : National Science Centre, Poland

References

  1. Bajkowski, J.M., Bajer, C.I., Dyniewicz, B. and Pisarski, D. (2016), "Vibration control of adjacent beams with pneumatic granular coupler: an experimental study", Mech. Res. Commun., 78, 51-56. https://doi.org/10.1016/j.mechrescom.2016.10.005.
  2. Bozorgvar, M. and Zahrai, S.M. (2019), "Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution", Smart Struct. Syst., 23(1), 1-14. https://doi.org/10.12989/sss.2019.23.1.001.
  3. Faraj, R., Holnicki-Szulc, J., Knap, L. and Senko, J. (2016), "Adaptive inertial shock-absorber", Smart Mater. Struct., 25, 035031. https://doi.org/10.1088/0964-1726/25/3/035031.
  4. Fesharaki, J. and Golabi, S. (2016), "A novel method to specify pattern recognition of actuators for stress reduction based on particle swarm optimization method", Smart Struct. Syst., 17(5), 725-742. http://dx.doi.org/10.12989/sss.2016.17.5.725.
  5. Friswell, M. and Mottershead, J.E. (1995), Optimising transducer locations, [Chapter 4.6 in:] Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, 71-77.
  6. Gaul, L. and Nitsche, R. (2001), "The role of friction in mechanical joints", Appl. Mech. Rev., 54(2), 93-106. doi:10.1115/1.3097294.
  7. Gaul, L., Lenz, J. and Sachau, D. (1998), "Active damping of space structures by contact pressure control in joints", J. Struct. Mech., 26(1), 81-100. https://doi.org/10.1080/08905459808945421.
  8. Graczykowski, C. and Holnicki-Szulc, J. (2015), "Crashworthiness of inflatable thin-walled structures for impact absorption", Math. Probl. Eng., 2015, 830471. http://dx.doi.org/10.1155/2015/830471.
  9. Griskevicius, P., Zeleniakiene, D., Ostrowski, M. and Holnicki-Szulc, J. (2007), "Crash-worthiness simulations of roadside restraint systems", Proceedings of the e 11th Int'l Conf on Transport Means, Kaunas, October, 282-285.
  10. Gupta, V., Sharma, M. and Thakur, N. (2010), "Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review", J. Intel. Mat. Syst. Str., 21(2), 1227-1243. https://doi.org/10.1177/1045389X10381659.
  11. Gutierrez Soto, M. and Adeli, H. (2013), "Placement of control devices for passive, semi-active, and active vibration control of structures", Scientia Iranica, 20(6), 1567-1578.
  12. Holnicki-Szulc, J., Graczykowski, C., Mikulowski, G., Mroz, A., Pawlowski, P. and Wiszowaty, R. (2015), "Adaptive impact absorption-the concept and potential applications", Int. J. Protective Struct., 6(2), 357-377. https://doi.org/10.1260/2041-4196.6.2.357.
  13. Hurlebaus, S. and Gaul, L. (2006), "Smart structure dynamics", Mech. Syst. Signal Pr., 20, 255-281. https://doi.org/10.1016/j.ymssp.2005.08.025.
  14. Karami, K., Nagarajaiah, S. and Amini, F. (2016), "Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device", Smart Struct. Syst., 18(5), 955-982. http://dx.doi.org/10.12989/sss.2016.18.5.955.
  15. Liberzon, D. (2003), Switching in Systems and Control, Birkhauser Basel.
  16. Liu, Y., Waters, T.P. and Brennan, M.J. (2005), "A comparison of semi-active damping control strategies for vibration isolation of harmonic disturbances", J. Sound Vib., 280(1-2), 21-39. https://doi.org/10.1016/j.jsv.2003.11.048.
  17. Marzec, Z. and Holnicki-Szulc, J. (1998), "Strategy of impulse release of strain energy for damping of vibration", Proceedings of the NATO Advanced Research Workshop "Smart Structures", Pultusk-Warsaw, June.
  18. Michajlow, M., Jankowski, L., Szolc, T. and Konowrocki, R. (2017), "Semi-active reduction of vibrations in the mechanical system driven by an electric motor", Opt. Control Appl. Methods, 38(6), 922-933. https://doi.org/10.1002/oca.2297.
  19. Mikulowski, G. and Jankowski, L. (2009), "Adaptive Landing Gear: optimum control strategy and potential for improvement", J. Shock Vib., 16, 175-194. https://dx.doi.org/10.3233/SAV-2009-0460.
  20. Mroz, A., Holnicki-Szulc, J. and Biczyk, J. (2015), "Prestress accumulation-release technique for damping of impact-born vibrations: Application to self-deployable structures", Math. Probl. Eng., 2015, 720236. http://dx.doi.org/10.1155/2015/720236.
  21. Mroz, A., Orlowska, A. and Holnicki-Szulc, J. (2010), "Semi-active damping of vibrations. Prestress Accumulation-Release strategy development", J. Shock Vib., 17(2), 123-136. http://dx.doi.org/10.3233/SAV-2010-0502.
  22. Nestorovic, T., Trajkov, M. and Garmabi, S. (2015), "Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm", Smart Struct. Syst., 15(4), 1041-1062. http://dx.doi.org/10.12989/sss.2015.15.4.1041.
  23. Onoda, J., Endo, T., Tamaoki, H. and Watanabe, N. (1990) "Vibration suppression by variable-stiffness members", AIAA J., 29(6), 977-983. https://doi.org/10.2514/3.59943.
  24. Pisarski, D. (2018a), "Optimal control of structures subjected to traveling load", J. Vib. Control, 24(7), 1283-1299. https://doi.org/10.1177/1077546316657244.
  25. Pisarski, D. (2018b), "Decentralized stabilization of semi-active vibrating structures", Mech. Syst. Signal Pr., 100, 694-705. https://doi.org/10.1016/j.ymssp.2017.08.003.
  26. Poplawski, B., Mikulowski, G., Mroz, A. and Jankowski, L. (2018), "Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments", Mech. Syst. Signal Pr., 100, 926-939. https://doi.org/10.1016/j.ymssp.2017.08.012.
  27. Soria, J.M., Diaz, I.M. and Garcia-Palacios, J.H. (2017), "Vibration control of a time-varying model-parameter footbridge: study of semi-active implementable strategies", Smart Struct. Syst., 20(5), 525-537. https://doi.org/10.12989/sss.2017.20.5.525.
  28. Spencer, Jr. B. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
  29. Szmidt, T., Pisarski, D., Bajer, C.I. and Dyniewicz, B. (2017), "Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control", J. Sound Vib., 401, 127-138. https://doi.org/10.1016/j.jsv.2017.04.033.
  30. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn. D.D., Vakakis, A.F. and Bergman, L.A. (2017), "Response attenuation in a largescale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers", J. Sound Vib., 389, 52-72. https://doi.org/10.1016/j.jsv.2016.11.003.
  31. Wilde, K., Miskiewicz, M. and Chroscielewski, J. (2013), "SHM System of the Roof Structure of Sports Arena Olivia", Proceedings of the 9th Int'l Workshop on Structural Health Monitoring (IWSHM), Stanford, CA, September.
  32. Xu, Z.D. and Shen, Y.P. (2003), "Intelligent bi-state control for the structure with magnetorheological dampers", J. Intel. Mat. Syst. Str., 14(1), 35-42. https://doi.org/10.1177/1045389X03014001004.
  33. Xu, Z.D., Shen, Y.P. and Guo, Y.Q. (2003), "Semi-active control of structures incorporated with magnetorheological dampers using neural networks", Smart Mater. Struct., 12(1), 80-87. https://doi.org/10.1088/0964-1726/12/1/309
  34. Xu, Z.D., Zhao, H.T. and Li, A.Q. (2004), "Optimal analysis and experimental study on structures with viscoelastic dampers", J. Sound Vib., 273(3), 607-618. https://doi.org/10.1016/S0022-460X(03)00522-4.
  35. Zawidzki, M. and Jankowski, L. (2018), "Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint", Smart Struct. Syst., 21(6), 715-725. https://doi.org/10.12989/sss.2018.21.6.715.
  36. Zhan, M., Wang, S.L., Yang, T., Liu, Y. and Yu, B.S. (2017), "Optimum design and vibration control of a space structure with the hybrid semi-active control devices", Smart Struct. Syst., 19(4), 341-350. https://doi.org/10.12989/sss.2017.19.4.341.
  37. Zhang, Q., Jankowski, L. and Duan, Z. (2013), "Simultaneous identification of moving vehicles and bridge damages considering road rough surface", Math. Probl. Eng., 2013, 963424. http://dx.doi.org/10.1155/2013/963424.

Cited by

  1. Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium vol.26, pp.6, 2020, https://doi.org/10.12989/sss.2020.26.6.809