• Title/Summary/Keyword: actuator placement

Search Result 23, Processing Time 0.032 seconds

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control Using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2001
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping(2$\omega$ζ) . It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing the SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

Fast Component Placement with Optimized Long-Stroke Passive Gravity Compensation Integrated in a Cylindrical/Tubular PM Actuator

  • Paulides, J.J.H.;Encica, L.;Meessen, K.J.;Lomonova, E.A.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.275-282
    • /
    • 2013
  • Applications such as vibration isolation, gravity compensation, pick-and-place machines, etc., would benefit from (long-stroke) cylindrical/tubular permanent magnet (PM) actuators with integrated passive gravity compensation to minimize the power consumption. As an example, in component placing (pick-and-place) machines on printed circuit boards, passive devices allow the powerless counteraction of translator including nozzles or tooling bits. In these applications, an increasing demand is arising for high-speed actuation with high precision and bandwidth capability mainly due to the placement head being at the foundation of the motion chain, hence, a large mass of this device will result in high force/power requirements for the driving mechanism (i.e. an H-bridge with three linear permanent magnet motors placed in an H-configuration). This paper investigates a tubular actuator topology combined with passive gravity compensation. These two functionalities are separately introduced, where the combination is verified using comprehensive three dimensional (3D) finite element analyses.

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.684-688
    • /
    • 1998
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping. It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing tie SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach

  • Poplawski, Blazej;Mikulowski, Grzegorz;Pisarski, Dominik;Wiszowaty, Rafal;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • This paper proposes a quantitative criterion for optimization of actuator placement for the Prestress-Accumulation Release (PAR) strategy of mitigation of vibrations. The PAR strategy is a recently developed semi-active control approach that relies on controlled redistribution of vibration energy into high-order modes, which are high-frequency and thus effectively dissipated by means of the natural mechanisms of material damping. The energy transfer is achieved by a controlled temporary removal of selected structural constraints. This paper considers a short-time decoupling of rotational degrees of freedom in a frame node so that the bending moments temporarily cease to be transferred between the involved beams. We propose and test a quantitative criterion for placement of such actuators. The criterion is based on local modal strain energy that can be released into high-order modes. The numerical time complexity is linear with respect to the number of actuators and potential placements, which facilitates quick analysis in case of large structures.

Design of a Tracking Gain-up Controller for the Vibration Suppression of Tracking Actuator (트랙킹 액추에이터의 진동 억제를 위한 트랙킹 Gain-up 제어기 설계)

  • Lee, Moonnoh;Jin, Kyoung Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.356-364
    • /
    • 2013
  • This paper presents a tracking gain-up controller design method to control effectively the vibration of tracking actuator caused by external shocks and remaining velocity after seek control. A pole placement constraint is considered to assure a desired transient response against the vibration of tracking actuator. A loop gain-up constraint is introduced to hold the tracking gain-up loop gain and control bandwidth within allowable bounds. The pole placement constraint is expressed by a matrix inequality and the loop gain-up constraint is considered as an objective function so that genetic algorithm can be applied. Finally, a tracking gain-up controller is obtained by integrating a genetic algorithm with LMI design approach. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and its effectiveness is evaluated through the experimental results.

Optimal Design of a Smart Actuator by using of GA for the Control of a Flexible Structure Experiencing White Noise Disturbance

  • Han, Jungyoup;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.125-129
    • /
    • 1996
  • This paper deals with the problem of placement/sizing of distributed piezo actuators to achieve the control objective of vibration suppression. Using the mean square response as a performance index in optimization, we obtain optimal placement and sizing of the actuator. The use of genetic algorithms as a technique for solving optimization problems of placement and sizing is explored. Genetic algorithms are also used for the control strategy. The analysis of the system and response moment equations are carried out by using the Fokker-Planck equation. This paper presents the design and analysis of an active controller and optimal placement/sizing of distributed piezo actuators based on genetic algorithms for a flexible structure under random disturbance, shows numerical example and the result.

  • PDF

Placement of actuator for efficient modal control (효율적 모우드 제어를 위한 구동기 위치 결정법)

  • 노현석;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.47-51
    • /
    • 1993
  • A method of finding the optimal actuator location for efficient control of the modes of interest is presented. The proposed approach relies on certain quantitive measure of degree of controllability based on the controllability grammian. This measure proves to be useful for regulating problem of the undamped system and can be extended to cover the tracking problem of the viscous damped system. The example of the uniform cantilever beam is given to verify the effectiveness of the method.

  • PDF

Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator

  • Mishra, Kaushik;Panda, Subrata K.;Kumar, Vikash;Dewangan, Hukum Chand
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.391-401
    • /
    • 2020
  • The present article reports the feasibility of the electrical energy generation from ambient low-frequency vibration using a piezoelectric material mounted on a bimorph cantilever beam actuator. A corresponding higher-order analytical model is developed using MATLAB in conjunction with finite element method under low-frequency with both damped and undamped conditions. An alternate model is also developed to check the material and dimensional viability of both piezoelectric materials (mainly focussed to PVDF and PZT) and the base material. Also, Genetic Algorithm is implemented to find the optimum dimensions which can produce the higher values of voltage at low-frequency frequencies (≤ 100 Hz). The delamination constraints are employed to avoid inter-laminar stresses and to increase the fracture toughness. The delamination has been done using a Teflon sheet sandwiched in between base plates and the piezo material is stuck to the base plate using adhesives. The analytical model is tested for both homogenous and isotropic material characteristics of the base material and extended to investigate the effect of the different geometrical parameters (base plate dimensions, piezo layer dimensions and placement, delamination thickness and placement, excitation frequency) on the model responses of the bimorph cantilever beam. It has been observed that when the base material characteristics are homogenous, the efficiency of the model remains higher when compared to the condition when it is of isotropic material. The necessary convergence behaviour of the current numerical model has been established and checked for the accuracy by comparing with available published results. Finally, using the results obtained from the model, a prototype is fabricated for the experimental validation via a suitable circuit considering Glass fibre and Aluminium as the bimorph material.