• Title/Summary/Keyword: vibration modes

Search Result 1,277, Processing Time 0.033 seconds

Bending Vibration of a Pretwisted Rotating Cantilever Beam (초기 비틀림각을 갖는 회전 외팔보의 굽힘 진동)

  • Park, Jung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2174-2181
    • /
    • 1996
  • Equations of chordwise and flapwise bending motions of pretwisted rotatin cantilever beams are derived. The two motions are coupled to each other due to the pretwist angle of the beam cross section. As the angular speed, hub radius ratio, and pretwist angle vary, the vibration characteristics of the beam change. It is found that engenvalue loci veering phenomena and associated mode shape variations occur between two vibration modes due to the pretwist angle. The effect of the pretwist angle on the critical angular speed is also investigated.

A Study on Plate Vibration Control using System Identification (시스템 식별법을 이용한 평판 진동 제어에 관한 연구)

  • Lee, Jea-Ho;Jung, Joon-Hon;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.99-101
    • /
    • 2005
  • This paper is concerned with the active vibration control of flexible plate system using $H_2$ controller. The main objective of this paper is to propose the system identification for estimation dynamic equation of plate vibration system and control algorithm such as $H_2$ controller design. In this paper dynamic equation is determined by considering only the first, second, and third vibration modes, and experiments confirm that this model works well. The $H_2$ control algorithm is proposed and implemented on the experimental setup to show their efficacy. Effectiveness and performance of the designed controller was verified by both simulation and experiment result.

  • PDF

Disengagement of a Pendant Liquid Drop from a Vibrating Ceiling (진동하는 고체면에 매달린 액적의 분리 현상)

  • 김호영;강승민;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.295-303
    • /
    • 2001
  • Condensation of vapor on solid inherently accompanies generation of liquid drops on the solid surface. However, these drops prevent the solid surface from directly contacting the saturated vapor, thus causing thermal resistance. This work investigates a novel mechanism for enhancing the condensation process, in which the condensed drops are rapidly removed from a solid surface by imposing vibration on them. In the experiments, a water drop pendant from a solid surface is vibrated at a fixed frequency while increasing the vibration amplitude. Upon repeating the experiments using various frequencies, it is revealed that there exist resonant frequencies at which the minimum vibration amplitudes inducing a fall-off of the pendant drops are remarkably less than those at neighboring frequencies. These frequencies are supposed to correspond to the resonant frequencies for different modes of drop shape oscillations. They are compared with the resonant frequencies predicted by relatively simple analyses, and the factors causing discrepancy between then are discussed.

  • PDF

Free Vibration Analysis of Two Rectangular Plates Coupled with Fluid (유체와 연성된 두 직사각 평판의 고유진동 해석)

  • 유계형;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.752-755
    • /
    • 2001
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two rectangular identical plates coupled with bounded fluid. The fixed boundary condition along the plate edges and an ideal fluid are assumed. MSC/NASTRAN was used to perform finite element analysis and analytic solutions were compared with experimental solutions to verify finite element model. As a result, comparison of FEM and experiment show good agreement, and the transverse vibration modes, in-phase and out of-phase, were observed alternately in the fluid-coupled system. The effect of distance between two rectangular plates on the fluid-coupled natural frequency is investigated.

  • PDF

Study on Acoustic Resonance of Air-Conditioner Fan BLDC Motor (에어컨 팬 BLDC 전동기의 음향공진에 관한 연구)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Kwon, Joong-Hak;Bang, Ki-Chang;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.212-217
    • /
    • 2008
  • Acoustic noises generated during motor operation in mechanical system are from electromagnetic, mechanical, aerodynamic, and electrical sources. For identification of mechanical noise origins, misalignment, unbalance, fan shape, resonance, and vibration modes have been extensively considered to describe noise behavior. An experiment-based approach as well as a mathematical approach needs to be adopted for a realistic study into noise and vibration of the motor, because motor noise characteristics differ from type to type due to various noise sources. In this paper, a brushless DC motor for air-conditioner fan is analyzed by finite element method to identify noise source, and the analysis results are verified by experiments, and sensitivity analysis is performed by design of experiments.

  • PDF

Modal Model Reduction for Vibration Control of Flexible Rotor Supported by Active Magnetic Bearing

  • Jeon, Han-Wook;Lee, Chong-Won;Seto, Kazuto
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.290-293
    • /
    • 2008
  • This paper proposes a criterion to select the modes for modal truncated model of flexible rotor only supported by active magnetic bearings. The proposed approach relies on the concepts of minimum control input and output energy assuming that the system is subjected to transient disturbances. Accurate large order model for the levitated rotor is taken by finite element analysis and transformed to the modal equation. By proposed methodology, which modal states should be retained in the truncated model are investigated over the whole operational speed range by the calculation. Finally, the effectiveness is verified by checking the model error between original model and reduced model.

  • PDF

Floor Vibration Analysis of Economic Steel (ES) Beam Using Field Measured Acceleration Responses (진동특성을 고려한 ES-빔 공법의 사용성능 평가)

  • Woo, Jong-Yeol;Park, Soo-Yong;Kim, Min-Jin;Hong, Seong-Wook;Doh, Sun-Boong;Choi, Tae-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.83-84
    • /
    • 2011
  • This study provides floor vibration analysis for a factory constructed by ES-beam using field measured acceleration data. The natural frequencies of the first two modes of floor are extracted from measured data. With this information, a system identification has been performed to produce a numerical model representing existing floor. The peak magnitudes of acceleration for one man walking heel drop load from experiment and numerical model are analyzed using ISO vibration criteria and AIJ vibration performance criteria. The results show that there is no problem in use of ES-beam.

  • PDF

The Vibration Control of Flexible Manipulators using Adaptive Input Shaper (적응 입력다듬기를 이용한 유연한 조작기의 진동제어)

  • 신효필;정영무;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.220-227
    • /
    • 1999
  • The position control accuracy of a robot arm is significantly deteriorated when a long slender arm robot is operated at a high speed. In this case, the robot arm needs to be modeled as a flexible structure, not a rigid one, and its control system needs to be designed with its elastic modes taken into account. In this paper, the vibration control scheme of a one-link flexible manipulator using adaptive input shaper in conjunction with PID controller is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and an accelerometer. On-line identification of the vibration mode is done using the pruned decimation-in-time FFT algorithm to estimate the parameter of the input shaper. Experimental results of the flexible manipulator with a PID controller and input shaper are provided to show the effectiveness of the advocated controllers.

  • PDF

Vibration Characteristics of Rotating Disks with Aerodynamic Effect (II) - Experimental Verifications - (공기 유동 효과를 고려한 회전 디스크의 진동 특성 (II) - 실험적 검증 -)

  • Lim, Hyo-Suk;Yim, Vit;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of rotating disks are investigated in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments performed using a vacuum chamber and ASMO/DVD disks rotating in vacuum, open and enclosure in several gaps with stationary wall give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

Flapwise bending vibration analysis of rotating cantilever beams considering shear and rotary inertial effects (전단 및 단면 회전관성효과를 고려한 회전 외팔보의 면외 굽힘진동해석)

  • Shin, Sang-Ha;Yoo, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1580-1588
    • /
    • 1997
  • A modeling method for the flapwise bending vibration of a rotating cantilever beam which has small slenderness ratio is presented in this paper. It is shown that as the slenderness ratio decreases the shear and rotary inertia effects increase. Such effects become critical for the accurate estimation of the natural frequencies and modeshapes, especially higher frequencies and modes, as the angular speed increases. It is also shown that the flapwise bending natural frequencies are higher than the chordwise bending natural frequencies. The discrepancy between first natural frequencies are especially significant when the hub radius ratio is small.