• Title/Summary/Keyword: vibration active control

Search Result 1,036, Processing Time 0.033 seconds

Vibration control of elastic systems (탄성계의 진동제어)

  • 박영필;이상조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.113-118
    • /
    • 1986
  • The feedback controllers for the active vibration control of elastic systems are developed using optimal regulator, optimal tracking, time optimal and noise observer algorithms. Using the modal analysis of the elastic systems, the effects of the actuator positions, the input weighting factor and the magnitude of the constraint of the actuator force are investigated.

  • PDF

Development of Electromagnetic Active Engine Mount (전자식 능동 엔진 마운트 개발)

  • Hong, Sung-Woo;Lee, Ho-Chul;Choi, Sang-Min;Kim, Jeong-Hoon;Lee, Dong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.280-281
    • /
    • 2008
  • In pursuit of decreasing noise and vibration, the electromagnetic active control mount(ACM) is developed which is corresponding with the tendency of greater fuel efficiency, higher engine power and lower lightweight vehicle. In process of developing the ACM, making patent searches and benchmarking are performed first, and then robust mount design which is reflected on the users' demand through Design For Six Sigma(DFSS) is carried out. The manufactured prototype of ACM is tested in various environmental conditions for the purpose of ensuring the performance quantitatively.

  • PDF

Application of Semi-active TMD for Vibration Control of Floor Slab (바닥판 구조물의 진동제어를 위한 준능동 TMD의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.607-612
    • /
    • 2007
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. When TMDs are off tuned, TMDs their effectiveness is sharply reduced. This paper discusses the application of MR-TMD, semi-active damper, for the reduction of floor vibrations due to machine and human movements. Here, the groundhook and skyhook algorithm are applied to a single degree of freedom system representative of building floors. And displacement and velocity base control method are applied to reduce t100r vibration. The performance of the STMD is compared to that of the equivalent passive TMD. Comparison of the results demonstrates the efficiency and robustness of STMD with respect to equivalent TMD.

  • PDF

Active Window to Reduce the Exterior Noise Flowed Through the Open Window (열린 창문을 통해 유입되는 소음을 저감하는 능동소음제어 창문)

  • Kwon, Byoung-Ho;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.820-827
    • /
    • 2011
  • Recently, noise has been regarded as one of the most notorious and frequent environmental pollutions which can be often encountered not only in the living space but also in the industrial site. Studies on physiological and psychological effects of long-term noise exposure to human being have commanded the public interest on noise issues. Since environmental noises such as traffic noise and construction noise is mainly flowed through the open window, it is necessary to develop the active noise control system to reduce it inside the building. Although control speakers and microphones for the noise signal measurement in the control region are essential for the conventional active noise control methods, it is impossible to implement them in the control region in the building environment because the control region is the living quarter and they may hinder activities of the residents. Therefore, we proposed the active window system to reduce the exterior noise flowed through the open window with microphones installed outside the window and control speakers installed at the frame of the window. To confirm the performance of the proposed active window, we carried out the simulation and experiment using active window system with 8 control speakers. Simulation results showed the noticeable noise reduction effect inside the control region within the frequency range without the spatial aliasing. Experimental result showed that the total acoustic potential energy inside the room of the scale model is reduced to about 10dB within the interest of frequency range.

Integrated Structural and PD-Control Optimization of Flexible Rotor Supported by Active Magnetic Bearings

  • Jeon, Han-Wook;Lee, Chong-Won;Watanabe, Toru
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.736-742
    • /
    • 2008
  • This paper proposes new searching algorithm for the optimal PD gains of flexible rotor supported by active magnetic bearings. Under the assumption of linearized bearing parameters with respect to PD gains, the performance index in quadratic form is defined and steepest descent method is adopted for determining local minimum. Moreover, the eigenpair sensitivity concept is utilized to evaluate the sensitivity of performance index. To evaluate the effectiveness of suggested algorithm, the finite element model is constructed and its reduced model is retained in modal domain. Given starting gains, the optimal gains are successfully found and the control performance is demonstrated by simulation to show the efficiency of the proposed method.

  • PDF

Decentralized control via sensor network and its theoretical approach to design of an active vibration isolator (센서네트워크를 통한 분산제어와 초정밀 방진기 설계에 관한 이론적 접근)

  • Song B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.519-522
    • /
    • 2005
  • Decentralized Dynamic Surface Control(DDSC) for a class of nonlinear system interconnected via sensor network is presented in this paper. While a centralized design approach of DSC was developed in [1], the decentralized approach to deal with complex large-scale systems is proposed under the assumption that interconnected functions among subsystems are known via sensor network. As shown in [2], the separation principle for DDSC will allow us to design an estimation filter independently. Furthermore, the theoretical results are used to design and simulate an active vibration isolator under the assumption that many embedded sensors are distributed and communicate each other via wireless communication.

  • PDF

Active Vibration Control of Structure Using LMI Optimization Design of Robust Saturation Controller (강인 포화 제어기의 LMI 최적 설계를 이용한 구조물의 능동 진동 제어)

  • Park, Young-Jin;Moon, Seok-Jun;Lim, Chae-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.298-306
    • /
    • 2006
  • In our previous paper, we developed a robust saturation controller for the linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. This controller can only guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. But we cannot analytically make any comment on control performance of this controller. In this paper, we suggest a method to use linear matrix inequality (LMI) optimization problem which can analytically explain control performance of this robust saturation controller only in nominal system. The availability of design method using LMI optimization problem for this robust saturation controller is verified through a numerical example for the building with an active mass damper (AMD) system.

Active Vibration Suppression of a Flexible Structure Using Sliding Mode Control

  • Itik Mehmet;Salamci Metin U.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1149-1158
    • /
    • 2006
  • In this paper, sliding mode control (SMC) is designed and applied to an elastic structure to suppress some of its vibration modes. The system is an elastic beam clamped on one end and the designed controller uses only the deflection measurement of the free end. The infinite dimensional mathematical model of the beam is reduced to an ordinary differential equation set to represent the behavior of required modes. Since the states of the finite dimensional model are not physically measurable quantities, an observer is designed to estimate these states by measuring the tip deflection of the beam. The performance of the observer is important because the observed states are used in the SMC design. In this study, by using the output information, an observer is designed and tested to estimate the states of the finite dimensional model of the beam. Then the designed SMC is applied to the experimental beam system which gives satisfactory suppressed vibrations.

Comparative studies of adaptive filters for active noise barriers (능동방음벽을 위한 적응필터 비교연구)

  • Choi, Jeong-Il;Park, Kyung-Won;Cho, Hyun-Gi;Nam, Hyun-Do;Shin, Eun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.301-306
    • /
    • 2011
  • In this paper, active noise barriers for attenuation of road noise are proposed. multi-channel audio systems, DAQ part and high performance DSP H/W were designed. Active noise control firmware programs were implemented for multi-channel off-line/on-line estimation methods for secondary path transfer functions and FIR/IIR filter structure are used main noise control algorithms. To evaluate performance of proposed systems, the experiments were performed in an active noise barrier test bed for various noise cases.

  • PDF