• Title/Summary/Keyword: vibration absorber

Search Result 245, Processing Time 0.021 seconds

An Experimental Study onthe Endurance Characteristics of the Dynamic Absorber for Vibration Reduction of 4WD Vehicle's Powertrain (4륜구동 자동차의 동력기관에서 진동저감을 위한 동흡진기의 진동내구에 대한 실험적 연구)

  • 사종성;김찬묵
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1166-1172
    • /
    • 1999
  • This paper is the experimental study on the endurance characteristics of the dynamic absorber for the vibration reduction of the 4WD(4 Wheel drive) vehicle's powertrain. Employing the vehicle speed, natural frequencies of damper, modal testing results of powertrain and the weighting factor, the improved endurance test conditions are suggested to enlarge the life time of the dynamic absorber. The test results show that the life time of the dynamic absorber for Z-direction(up and down) has no problems, but the characteristics of X-direction (fore and after) will be sensitive to endurance characteristics of dynamic absorber.

  • PDF

A Study on the Characteristics of Dynamic Vibration Absorber with Coil Spring and Oil Damper (코일스프링과 오일댐퍼를 가지는 동흡진기의 특성에 관한 연구)

  • 김광식;안찬우
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.170-175
    • /
    • 1988
  • A study on the dynamic vibration absorber with coil spring and oil damper was carried out both theoretically and experimentally. A main mass is attached to a foundation using coil spring and oil damper. A harmonic motion was applied to the foundation. The effects of the dynamic vibration sbsorber are theoretically summarized in graphs, and tested on a vibratory model for the isolation of actual mechanical vibration. As a result, the first resonance amplitude ratio increased and the second resonance amplitude ratio decreased as the absorber spring constant increased. When the absorber mass increase, the first resonance amplitude ratio is decreased and the second resonace amplitude ratio is increased.

  • PDF

The Nonlinear Simulation on the Selection of Suitable Suspension Considering Human Vibration (인체 진동을 고려한 최적 현가장치의 선정에 관한 비선형 모의실험)

  • 김진기;홍동표;최만용
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.247-253
    • /
    • 2000
  • The evaluation of the ride quality had been performed by the subjective method before ISO2631(International Organization for Stadard 2631) and BS6841(British Standard 6841) was precented, but many research programs have been performed by the objective method after that. On this study, the ride quality was evaluated related with the objective method which considered the vibration which the human body feels on the driver's seat while driving on the road. In particular, we made the shock absorber nonlinear model and also selected the suitable shock absorber in the part of the vibration which the human body feels into the simulation. The shock absorber of suspension was dealt with 3 cases respectively with the front wheel and rear wheel. The vibration of the car driving on the road can be transferred to the wheel, the suspension, the vehicle body, the seat and the human body. The signal which was gained from the seat(hip) and the floor(foot) of the human body was changed to the vibration signal which the human body felt through using the frequency weighting function. And then the performance of the shock absorber was calculated through the statistic processing.

  • PDF

A Study of Stability Analysis on Nonlinear Dynamic Vibration Absorber Acting on Damped Main Vibration Systems (선형진동계에 작용하는 비선형진흡진기에 관한 안정성해소 연구)

  • 안찬우;박일수;박동환
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.62-68
    • /
    • 1992
  • In this study, a system coupled with the nonlinear dynamic vibration absorber was modelled, and its equation of motion was analized by the harmonic balance method to obtain the amplitude ratio. And also, the stability analysis was done by the Routh Hurwitz method. In the vibration systems coupled with the nonlinear dynamic vibration absorber, the unstable region and the jump phenomenon can be ramarkably affected by the damping ratio. The stable and unstable region that obtained to differential method excellently agreed to the result of the stability analysis of Routh Hurwitz.

  • PDF

Vibration Control of Plates Using Resonant Shunted Piezoelectric Material (공진분기회로를 이용한 평판의 진동제어)

  • Kim, Young-Ho;Park, Chul-Hue;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.881-886
    • /
    • 2003
  • Vibration control of plates with a passive electrical damper is presented in this paper. This electrical absorber, piezoelectric patches connected with a resistor and an inductor in series, is analogous to the damped mechanical vibration absorber. For estimating the effectiveness of piezoelectric absorber, the governing equations of motion are derived using a classical laminate plate theory and Hamilton principle. The developed theoretical analyses are validated experimentally for simply-supported aluminum plates in order to demonstrate the performance of passive electrical damper. The result shows that the vibration amplitude is reduced about 14dB for the targeted first vibration mode.

  • PDF

Vibration Control of Plates Using Resonant Shunted Piezoelectric Material (공진분기회로를 이용한 평판의 진동제어)

  • Kim, Young-Ho;Park, Chul-Hue;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1778-1784
    • /
    • 2003
  • Vibration control of plates with a passive electrical damper is presented in this paper. This electrical absorber, piezoelectric patches connected with a resistor and an inductor in series, is analogous to the damped mechanical vibration absorber. For estimating the effectiveness of piezoelectric absorber, the governing equations of motion are derived using a classical laminate plate theory and Hamilton principle. The developed theoretical analysis is validated experimentally for a simply-supported aluminum plate in order to demonstrate the performance of passive electrical damper. The result shows that the vibration amplitude is reduced about 14dB for the targeted first vibration mode.

Design of double dynamic vibration absorbers for reduction of two DOF vibration system

  • Son, Lovely;Bur, Mulyadi;Rusli, Meifal;Adriyan, Adriyan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.161-178
    • /
    • 2016
  • This research is aimed to design and analyze the performance of double dynamic vibration absorber (DVA) using a pendulum and a spring-mass type absorber for reducing vibration of two-DOF vibration system. The conventional fixed-points method and genetics algorithm (GA) optimization procedure are utilized in designing the optimal parameter of DVA. The frequency and damping ratio are optimized to determine the optimal absorber parameters. The simulation results show that GA optimization procedure is more effective in designing the double DVA in comparison to the fixed-points method. The experimental study is conducted to verify the numerical result.

Vibration Analysis and Active Absorber Design for a Multi-Body System (다물체계의 진동해석 및 능동적 방진설계)

  • 오준환;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1503-1507
    • /
    • 2003
  • A general vibration phenomenon of a rigid-body supported by springs can be viewed as a small repetitive screw displacement. From this view, a multi-directional vibration absorber can be designed by use of screw theory and transfer matrix method. In this paper, the basic equations of motion for a multi-body system have been expressed in terms of screws using transfer matrix method and a simple approach to the design of a multi-degrees-of-freedom absorber has been presented. In order to illustrate the methodology, an example for the design of a 2-DOF active absorber which is capable of absorbing vibration of a rigid body excited by 3-DOF external force has been presented.

  • PDF

감쇠진동계에 부착된 코일스프링과 오일댐퍼로 구성된 동흡진기

  • 최석창;안찬우;박일수;이희범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.289-293
    • /
    • 1996
  • Vibration absorber is used to protect the primary system from steady-state harmonic disturbance. By attaching the absorber to the primary system which is modeled as a SDOF system, the new system becomes two DOF system. Depending on the driving frequency on the original system, the absorber needs to be carefully tuned, that is, to choose adequate value of the absorber mass and stiffness, so that the motion of the original mass is a minimum. This paper presents the effects of resonance frequency ratio and of vibration absorber with oil damper and coil spring for linear damped primary systems.

  • PDF