• 제목/요약/키워드: vibration/vibration control

검색결과 4,109건 처리시간 0.036초

전자기력을 이용한 능동제진

  • 손규태;유원희;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.179-183
    • /
    • 2001
  • Vibration isolation of mechanical systems, in general is achieved through either passive or active vibration control system. Although passive vibration isolators offer simple and reliable means to protect mechanical system from vibration environment, passive vibration isolator has inherent performance limitation. Whereas, active vibration isolator provide significantly superior vibration-isolation performance. Recently, many studied and applications are carried out in this field. In this study, vibration-isolation characteristics of active vibration control system using electromagnetic force actuator are investigated. Some control algorithms. Optimal Feedforward are used for active vibration isolation. Form the experimental results of each control algorithms, active vibration isolation characteristics are investigated.

전자기력을 이용한 능동제진에 관한 연구 (A Study on Active Vibration Isolation Using Electro-Magnetic Actuator)

  • 손태규;김규용;박영필
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1169-1181
    • /
    • 1994
  • Vibration isolation of mechanical systems, in general, is achieved through passive or active vibration isolators. Passive vibration isolator has an inherenrt performance limitation. Whereas, active vibration isolator provides significantly superior vibration-isolation performance at the cost of energy sources and sensors. Recently, in many cases, such as suspension system, precision machinery ... etc, active isolation system outweighs its limitation. Therefore, many studies, researches, and applications are carried out in this field. In this study, vibration-isolation characteristics of an active vibration control system using electromagnetic force actuator are investigated. Several control algorithms including optimal, feedforward are used for active vibration isolation. From the experimental results of each algorithm, effective control algorithms for this active vibration-isolation system are proposed.

진동의 영역 제어 (Regional Control of Vibration)

  • 김양한;장지호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.472-475
    • /
    • 2008
  • Generally, a linear vibration theory regards a vibratory system as the superposition of many degrees of vibratory system. Modal analysis stems, in fact, considers the vibration system as what has input, output, and transfer function that relates the input and output. When we want to control, however, the vibratory system, we define, first, the object function that can be vibration energy of certain vibratory system. Then, we try to find the transfer function that can minimize the object function. We can readily extend this approach to control the distributed vibration system. For example, the vibrations of a vehicle, including ships and trains. In this case, we may want to minimize the vibration of the area we select. For example, minimize the vibration of the passengers' seat, but allowing the vibration of other area; for example engines and wheels. This paper introduces a general theory that can control the vibration of the selected area, which can be called as "regional control of vibration." In fact, this is the extended theory of well known sound control of "bright zone"(Choi and Kim, 2002).]. Several illustrative examples demonstrate the applicability and properties that are not available if we use modal analysis method.

  • PDF

유연구조물이 있는 다점지지 시스템의 능동진동제어 (Active vibration control of multi-point mounting systems with flexible structures)

  • 오시환;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.274-279
    • /
    • 2000
  • Driving of the engine makes unbalance forces which induces vibration to the engine mount system. Active vibration control must be performed to reduce the vibration and the propagation of structure-born sound. In this study, the engine system is modeled as 3-dim. vibration system including flexible structures and an effective active noise control method is proposed. Also, appropriate actuator and sensor locations and types are selected. The miniature of the engine vibration system with multi-input multi-output is built and an active vibration control with multiple filtered-X LMS algorithm is applied to it. The applied control method was effective to reduce the transmitted vibration power through the rubber mount It showed the feasibility of the control of the engine vibration systems with flexible structures.

  • PDF

Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions

  • Karimi Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.714-724
    • /
    • 2006
  • In this note a method of designing optimal vibration control based on Haar functions to control of bounce and pitch vibrations in engine-body vibration structure is presented. Utilizing properties of Haar functions, a computational method to find optimal vibration control for the engine-body system is developed. It is shown that the optimal state trajectories and optimal vibration control are calculated approximately by solving only algebraic equations instead of solving the Riccati differential equation. Simulation results are included to demonstrate the validity and applicability of the technique.

고속 엘리베이터의 전후 진동제어를 위한 동적 모델링 및 능동 제어기 설계 (Dynamic Modeling and Controller Design for Active Control of High-speed Elevator Front-back Vibrations)

  • 백광현;김기영;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제21권1호
    • /
    • pp.74-80
    • /
    • 2011
  • Front-back vibrations of high-speed elevator need to be suppressed as in the case of lateral vibrations. The dynamic model for the front-back vibrations is different from the lateral vibration model since the supporting structure varies. In this study, a dynamic model was derived using the energy method. Based on the free vibration analysis, it was observed that the fundamental frequency for the front-back vibration is slightly lower than the fundamental frequency of the lateral vibration, which means that the active vibration control should be carried out in both directions. The PPF control algorithm was applied to the numerical model under measured rail irregularities. The numerical results show that the active vibration control of elevator front-back vibration is also possible.

주파수가변 압전 트랜스듀서를 이용한 능동제진법 (Active Vibration Control Method Using Frequency Controllable Piezoelectric Transducer)

  • 김정순;김무준;하강렬;강성학
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권1E호
    • /
    • pp.27-32
    • /
    • 2007
  • Hydraulic actuator and electro-magnetic liner actuator have been used as typical active vibration control methods. However these methods have many kinds of disadvantages such as causing space limit, difficult maintenance, complicate structures, etc. The purpose of this paper was to study on the possibility of active vibration control using piezoelectric transducer. Piezoelectric transducer generated a vibration and GIC (General Impedance Converter) amplifier was adopted to give adjustable vibration signal to transducer and high amplitude of vibration. Resonance frequency of piezoelectric transducer was controlled by GIC amplifier and higher amplitude of vibration was achieved. Finally active vibration control using piezoelectric transducer was performed.

Recent Developments in Japan Relevant to Structural Vibration Control

  • Seto, Kazuto
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1993년도 추계학술대회논문집; 반도아카데미, 26 Nov. 1993
    • /
    • pp.5-18
    • /
    • 1993
  • This paper reports the recent trends in active vibration control in Japan, especially, based on papers selected in the Proceedings of First International Conference on Motion and Vibration Control (1st MOVIC) held at Yokohama, Japan on Sept.7-11, 1992. Firstly, it classifiers vibration control methods and vibration controllers, especially active dynamic absorbers which are widely used in mechanical and civil engineering. Secondly, it covers basic problems in the control of vibration of flexible structures such as formulating a reduced-order model required for designing vibration controller, proper arranging of sensors and actuators, and preventing of spillover instability. Finally, the practical use of control theories such as LQ control theory, $H^{\infty}$ control theory, neural network theory, and other topics are discussed..

  • PDF

구조물 진동제어장치 개발 및 최적 면진설계 시스템 개발 (Development of the vibration control devices and the optimal base-isolation design system for Structures)

  • 김병현;정정훈;문석준;허영철;정종안
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.375-380
    • /
    • 2004
  • Seismic Isolation and Shock/vibration Control Laboratory has performed the National Research Laboratory(NRL) project, 'Design and Application of Control Devices against Earthquake/Shock/Vibration'. In this project, the prototypes of the vibration control devices for structural control against earthquake and wind were developed and verified their performances. And also, the computer programs were developed for the seismic response analysis and the optimum design of the base-isolated structures with vibration control devices. This paper introduces the developed vibration control devices and computer programs.

  • PDF

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.