Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions

  • Karimi Hamid Reza (Control & Intelligent Processing Center, School of Electrical and Computer Engineering, University of Tehran)
  • Published : 2006.12.30

Abstract

In this note a method of designing optimal vibration control based on Haar functions to control of bounce and pitch vibrations in engine-body vibration structure is presented. Utilizing properties of Haar functions, a computational method to find optimal vibration control for the engine-body system is developed. It is shown that the optimal state trajectories and optimal vibration control are calculated approximately by solving only algebraic equations instead of solving the Riccati differential equation. Simulation results are included to demonstrate the validity and applicability of the technique.

References

  1. B. Riley and M. Bodie, 'An adaptive strategy for vehicle vibration and noise cancellation,' Proc. of CDC, 1996
  2. O. Tokhi and S. Veres, Active Sound and Vibration Control: Theory and Applications, lEE Control Engineering Series 62, London, United Kingdom, 2002
  3. H. J. Karkosch, F. Svaricek, R. Shoureshi, and J.L. Vance, 'Automotive applications of active vibration control,' Proc. of European Control Conference, 2000
  4. R. Krtolica and D. Hrovat, 'Optimal active suspension control based on a half-car model,' Proc. of the 29th CDC, pp. 2238-2243, 1990
  5. A. Preumont, Vibration Control of Active Structures: An Introduction, Kluwer Academic Publishers, 1997
  6. S. J. Elliott and P. A. Nelson, 'Active noise control,' IEEE Signal Processing Magazine, vol. 10, no. 4, pp. 12-35, October 1993 https://doi.org/10.1109/79.248551
  7. A. M. McDonald, S. J. Elliott, and M. A. Stokes, 'Active noise and vibration control within the automobile,' Proc. of Active Control of Sound and Vibration, pp. 147-157, Tokyo 1991
  8. B. Seba, N. Nedeljkovic, J. Paschedag, and B.Lohmann, 'Feedback control and FX-LMS feedforward control for car engine vibration attenuation,' Applied Acoustics, vol. 66, pp. 277296,2005 https://doi.org/10.1016/j.apacoust.2004.07.015
  9. J. Yang, Y. Suematsu, and Z. Kang, 'Twodegree-of-freedom controller to reduce the vibration of vehicle engine-body system,' IEEE Trans. on Control Systems Technology, vol. 9, no. 2, pp. 295-304, March 2001 https://doi.org/10.1109/87.911381
  10. G. Kim and R. Singh, 'A study of passive and adaptive hydraulic engine mount systems with emphasis on nonlinear characteristics,' J. Sound and Vibration, vol. 179, pp. 427-453, 1995 https://doi.org/10.1006/jsvi.1995.0028
  11. G. Aglietti, J. Stoustrup, E. Rogers, R. Langley, and S. Gabriel, 'LTR control methodologies for micro vibrations,' Proc. IEEE CCA, Sept. 1998
  12. T. Cao, L. Chen, F. He, and K. Sammut, 'Active vibration absorber design VIa sliding mode control,' Proc. of American Control Conference, pp. 1637-1638, June 2000
  13. A. Cavallo, G. Maria, and R. Setola, 'A sliding manifold approach for vibration reduction of flexible systems,' Automatica, vol. 35, pp. 16891696, 1999 https://doi.org/10.1016/S0005-1098(99)00068-0
  14. M. Hino, Z. Iwai, I. Mizumoto, and R. Kohzawa, 'Active vibration control of a multi-degree-offreedom structure by the use of robust decentralized simple adaptive control,' Proc. of IEEE CCA, pp. 922-927, September 1996
  15. J. Hong and D. S. Bernstein, 'Bode integral constraints, collocation and spill over in active noise and vibration control,' IEEE Trans. on Control Systems Technology, vol. 6, no. 1, pp.111-120,1998 https://doi.org/10.1109/87.654881
  16. J. W. Kamman and K. Naghshineh, 'A comparison of open-loop feedforward and closed-loop methods for active noise control using volume velocity minimization,' Applied Acoustics, vol. 57, pp. 29-37, 1999 https://doi.org/10.1016/S0003-682X(98)00043-7
  17. K. Nonami and S. Sivriogu, 'Active vibration control using LMI-Based mixed H2/Hco state and output feedback control with nonlinearity,' Proc. of the 35th Conf on Decision and Control, pp. 161-166, Dec. 1996
  18. R. Shoureshi, A. H. Chaghajerdi, and M. Bell, 'Hybrid adaptive robust structural vibration control,' Proc. of American Control Conference, pp. 1012-1016, June 1999
  19. L. Sievers and A. Flotow, 'Linear control design for active vibration isolation of narrow band disturbances,' Proc. of the 27th IEEE Conf on Decision and Control, Texas, pp. 1032-1037, 1988
  20. M. Weng, X. Lu, and D. Tumper, 'Vibration control of flexible beams using sensor averaging and actuator averaging methods,' IEEE Trans. on Control Systems Technology, vol. 10, no. 4, pp. 568-577, July 2002 https://doi.org/10.1109/TCST.2002.1014676
  21. H. R. Karimi, B. Lohmann, B. Moshiri, and P. J.Maralani, 'Wavelet-based identification and control design for a class of non-linear systems,' Int. J. Wavelets, Multiresoloution and Image Processing, vol. 4, no. 1, pp. 213-226, 2006 https://doi.org/10.1142/S0219691306001178
  22. . Patra and G. P. Rao, General Hybrid Orthogonal Functions and Their Applications in Systems and Control, Springer-Verlag, London, 1996
  23. C. F. Chen and C. H. Hsiao, 'Haar wavelet method for solving lumped and distributedparameter systems,' lEE Proc. Control Theory Appl., vol. 144, no. 1, pp. 87-94, 1997 https://doi.org/10.1049/ip-cta:19970702
  24. C. H. Hsiao and W. J. Wang, 'State analysis and parameter estimation of bilinear systems via Haar wavelets,' IEEE Trans. on Circuits and Systems 1: Fundamental Theory and Applications, vol. 47, no. 2, pp. 246-250, 2000 https://doi.org/10.1109/81.828579
  25. H. R. Karimi, B. Lohmann, P. J. Maralani, and B.Moshiri 'A computational method for solving optimal control and parameter estimation of linear systems using Haar wavelets,' Int. J. Computer Mathematics, vol. 81, no. 9, pp. 1121-1132, 2004 https://doi.org/10.1080/03057920412331272225
  26. G. P. Rao, Piecewise Constant Orthogonal Functions and Their Application to Systems and Control, Springer-Verlag, Berlin, Heidelberg, 1983
  27. C. F. Chen and C. H. Hsiao, 'A state-space approach to walsh series solution of linear systems,' Int. J. System Sci., vol. 6, no. 9, pp. 833-858, 1965
  28. H. R. Karimi, 'A computational method to optimal control problem of time-varying statedelayed systems by Haar wavelets,' Int. J. Computer Mathematics, vol. 83, no. 2, pp. 235-246, 2006 https://doi.org/10.1080/00207160600659257
  29. H. R. Karimi, P. J. Maralani, B. Moshiri, and B.Lohmann, 'Numerically efficient approximations to the optimal control of linear singularly perturbed systems based on Haar wavelets,' Int. J. Computer Mathematics, vol. 82, no. 4, pp. 495-507, April 2005 https://doi.org/10.1080/00207160512331323407
  30. H. R. Karimi, B. Moshiri, B. Lohmann, and P. J.Maralani, 'Haar wavelet-based approach for optimal control of second-order linear systems in time domain,' J. of Dynamical and Control Systems, vol. 11, no. 2, pp. 237-252, 2005 https://doi.org/10.1007/s10883-005-4172-z
  31. H. R. Marzban and M. Razzaghi, 'Solution of time-varying delay systems by hybrid functions,' Mathematics and Computers in Simulation, vol. 64, pp. 597-607,2004 https://doi.org/10.1016/j.matcom.2003.10.003
  32. M. Ohkita and Y. Kobayashi, 'An Application of rationalized Haar functions to solution of linear differential equations,' IEEE Trans. on Circuit and Systems, vol. 9, pp. 853-862, 1986
  33. R. Y. Chang and M. L. Wang, 'Legendre polynomials approximation to dynamical linear state-space equations with initial and boundary value conditions,' Int. J. Control, vol. 40, pp. 215-232,1984 https://doi.org/10.1080/00207178408933269
  34. I. R. Homg and J. H. Chou, 'Analysis, parameter estimation and optimal control of time-delay systems via Chebyshev series,' Int. J. Control, vol. 41, pp. 1221-1234,1985 https://doi.org/10.1080/0020718508961193
  35. C. Hwang and Y. P. Shin, 'Laguerre operational matrices for fractional calculus and applications,' Int. J. Control, vol. 34, pp. 557-584, 1981
  36. M. Razzaghi and M. Razzaghi, 'Fourier series direct method for variational problems,' Int. J. Control, vol. 48, pp. 887-895, 1988 https://doi.org/10.1080/00207178808906224
  37. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms, Prentice Hall, Upper Saddle River, New Jersey, 1998
  38. A. Graham, Kronecker Products and Matrix Calculus with Applications, Halsted Press, John Wiley and Sons, NY, 1981
  39. M. Athans and P. L. Flab, Optimal Control, McGraw-Hill, New York, 1966