• 제목/요약/키워드: vesicle trafficking

검색결과 17건 처리시간 0.021초

SNAREs in Plant Biotic and Abiotic Stress Responses

  • Kwon, Chian;Lee, Jae-Hoon;Yun, Hye Sup
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.501-508
    • /
    • 2020
  • In eukaryotes, membraneous cellular compartmentation essentially requires vesicle trafficking for communications among distinct organelles. A donor organelle-generated vesicle releases its cargo into a target compartment by fusing two distinct vesicle and target membranes. Vesicle fusion, the final step of vesicle trafficking, is driven intrinsically by complex formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNAREs are well-conserved across eukaryotes, genomic studies revealed that plants have dramatically increased the number of SNARE genes than other eukaryotes. This increase is attributed to the sessile nature of plants, likely for more sensitive and harmonized responses to environmental stresses. In this review, we therefore try to summarize and discuss the current understanding of plant SNAREs function in responses to biotic and abiotic stresses.

LRRK2 and membrane trafficking: nexus of Parkinson's disease

  • Hur, Eun-Mi;Jang, Eun-Hae;Jeong, Ga Ram;Lee, Byoung Dae
    • BMB Reports
    • /
    • 제52권9호
    • /
    • pp.533-539
    • /
    • 2019
  • Recent evidence from genetics, animal model systems and biochemical studies suggests that defects in membrane trafficking play an important part in the pathophysiology of Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most frequent genetic cause of both familial and sporadic PD, and LRRK2 has been suggested as a druggable target for PD. Although the precise physiological function of LRRK2 remains largely unknown, mounting evidence suggests that LRRK2 controls membrane trafficking by interacting with key regulators of the endosomal-lysosomal pathway and synaptic recycling. In this review, we discuss the genetic, biochemical and functional links between LRRK2 and membrane trafficking. Understanding the mechanism by which LRRK2 influences such processes may contribute to the development of disease-modifying therapies for PD.

Interaction of Human α-Synuclein with VTI1B May Modulate Vesicle Trafficking

  • Lee, Hak-Joo;Lee, Kyung-Hee;Im, Ha-Na
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3071-3075
    • /
    • 2012
  • Human ${\alpha}$-synuclein is the major component of the protein aggregates known as Lewy bodies or Lewy neurites, which define the intracellular lesions of Parkinson's disease. Despite extensive efforts, the physiological function of ${\alpha}$-synuclein has not yet been elucidated in detail. As an approach to defining its function, proteins that interacted with ${\alpha}$-synuclein were screened in phage display assays. The SNARE protein vesicle t-SNARE-interacting protein homologous 1B (VTI1B) was identified as an interacting partner. A selective interaction between ${\alpha}$-synuclein and VTI1B was confirmed by coimmunoprecipitation and GST pull-down assays. VTI1B and ${\alpha}$-synuclein were colocalized in N2a neuronal cells, and overexpression of ${\alpha}$-synuclein changed the subcellular localization of VTI1B to be more dispersed throughout the cytosol. Considering the role played by VTI1B, ${\alpha}$-synuclein is likely to modulate vesicle trafficking by interacting with a SNARE complex.

Synapsin Isoforms and Synaptic Vesicle Trafficking

  • Song, Sang-Ho;Augustine, George J.
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.936-940
    • /
    • 2015
  • Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts.

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee;Kim, Hyeran
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.313-322
    • /
    • 2020
  • Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

A Comprehensive Identification of Synaptic Vesicle Proteins in Rat Brains by cRPLC/MS-MS and 2DE/MALDI-TOF-MS

  • Lee, Won-Kyu;Kim, Hye-Jung;Min, Hye-Ki;Kang, Un-Beom;Lee, Cheol-Ju;Lee, Sang-Won;Kim, Ick-Young;Lee, Seung-Taek;Kwon, Oh-Seung;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1499-1509
    • /
    • 2007
  • Proteomic analyses of synaptic vesicle fraction from rat brain have been performed for the better understanding of vesicle regulation and signal transmission. Two different approaches were applied to identify proteins in synaptic vesicle fraction. First, the isolated synaptic vesicle proteins were treated with trypsin, and the resulting peptides were analyzed using a high-pressure capillary reversed phase liquid chromatography/tandem mass spectrometry (cRPLC/MS/MS). Alternatively, proteins were separated by two-dimensional gel electrophoresis (2DE) and identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF/MS). Total 18 and 52 proteins were identified from cRPLC/MS-MS and 2DE-MALDI-TOF-MS analysis, respectively. Among them only 2 proteins were identified by both methods. Of the proteins identified, 70% were soluble proteins and 30% were membrane proteins. They were categorized by their functions in vesicle trafficking and biogenesis, energy metabolism, signal transduction, transport and unknown functions. Among them, 27 proteins were not previously reported as synaptic proteins. The cellular functions of unknown proteins were estimated from the analysis of domain structure, expression profile and predicted interaction partners.

MICAL-like Regulates Fasciclin II Membrane Cycling and Synaptic Development

  • Nahm, Minyeop;Park, Sunyoung;Lee, Jihye;Lee, Seungbok
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.762-767
    • /
    • 2016
  • Fasciclin II (FasII), the Drosophila ortholog of neural cell adhesion molecule (NCAM), plays a critical role in synaptic stabilization and plasticity. Although this molecule undergoes constitutive cycling at the synaptic membrane, how its membrane trafficking is regulated to ensure proper synaptic development remains poorly understood. In a genetic screen, we recovered a mutation in Drosophila mical-like that displays an increase in bouton numbers and a decrease in FasII levels at the neuromuscular junction (NMJ). Similar phenotypes were induced by presynaptic, but not postsynaptic, knockdown of mical-like expression. FasII trafficking assays revealed that the recycling of internalized FasII molecules to the cell surface was significantly impaired in mical-like-knockdown cells. Importantly, this defect correlated with an enhancement of endosomal sorting of FasII to the lysosomal degradation pathway. Similarly, synaptic vesicle exocytosis was also impaired in mical-like mutants. Together, our results identify Mical-like as a novel regulator of synaptic growth and FasII endocytic recycling.

Affinity between TBC1D4 (AS160) phosphotyrosine-binding domain and insulin-regulated aminopeptidase cytoplasmic domain measured by isothermal titration calorimetry

  • Park, Sang-Youn;Kim, Keon-Young;Kim, Sun-Min;Yu, Young-Seok
    • BMB Reports
    • /
    • 제45권6호
    • /
    • pp.360-364
    • /
    • 2012
  • Uptake of circulating glucose into the cells happens via the insulin-mediated signalling pathway, which translocates the glucose transporter 4 (GLUT4) vesicles from the intracellular compartment to the plasma membrane. Rab GTPases are involved in this vesicle trafficking, where Rab GTPases-activating proteins (RabGAP) enhance the GTP to GDP hydrolysis. TBC1D4 (AS160) and TBC1D1 are functional RabGAPs in the adipocytes and the skeletonal myocytes, respectively. These proteins contain two phosphotyrosine-binding domains (PTBs) at the amino-terminus of the catalytic RabGAP domain. The second PTB has been shown to interact with the cytoplasmic region of the insulin-regulated aminopeptidase (IRAP) of the GLUT4 vesicle. In this study, we quantitatively measured the ${\sim}{\mu}M$ affinity ($K_D$) between TBC1D4 PTB and IRAP using isothermal titration calorimetry, and further showed that IRAP residues 1-49 are the major region mediating this interaction. We also demonstrated that the IRAP residues 1-15 are necessary but not sufficient for the PTB interaction.

플라보노이드 세포 수송 기전 (Cellular Flavonoid Transport Mechanisms in Animal and Plant Cells)

  • 한유리;이소영;이지혜;이성준
    • 한국식품과학회지
    • /
    • 제45권2호
    • /
    • pp.137-141
    • /
    • 2013
  • 플라보노이드는 식물의 주요 2차 대사산물 중 하나로 자외선 차단, 식물의 수분을 위한 곤충 유인 등 외부환경에 적응하는데 이로운 역할을 한다. 특히 플라보노이드는 항산화 효과가 우수한 것으로 알려져 노화방지와 생활습관 질병예방에 유용한 건강기능식품소재로 각광받고 있다. 하지만 플라보노이드의 생체이용률은 매우 낮으며 이러한 플라보노이드 흡수과정에 관한 생물학적기전은 최근에 조금씩 밝혀지기 시작하고 있다. 플라보노이드의 수송기전에는 세포 내에서 일어나는 소포체 매개 수송과 세포막 및 소기관 표면 단백질에 의한 막 수송체 매개 수송이 있다. 소포체 매개 수송의 경우 cellular trafficking에 의한 일련의 소포체 유래 vesicle의 융합 반응을 거쳐 식물 세포의 경우 액포 내에 플라보노이드가 축적되거나 세포 외부로 배출된다. 표면 단백질에 의해 플라보노이드의 세포막 흡수가 일어나게 되는데 ATP를 사용한 능동수송, 막 전위를 이용한 2차 수송에 관여하는 다수의 수송체들이 관여하는 것으로 보인다. 다양한 종류의 플라보노이드가 존재하는 만큼 플라보노이드 수송체도 다양하며 어쩌면 모든 플라보노이드의 특이적 수송체를 규명하는 것은 불가능 할 지도 모른다. 하지만 식품에 다량 존재하는 주요 플라보노이드를 모델 화합물로 이용한 연구를 수행하면 이에 관련된 주요 수송체 단백질과 관련 메커니즘에 대해 깊이 이해할 수 있고 이를 통해 생체 이용률을 향상시키는 방법을 생각해 볼 수 있으며 특히 낮은 혈중 농도 조건에서도 조직 세포 내에 플라보노이드 축적을 통해 건강 기능성을 최적화하는 노력을 기울이는데 적절한 과학적 방법을 제시해 줄 수 있을 것으로 기대한다.