DOI QR코드

DOI QR Code

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee (Department of Biological Sciences, Kangwon National University) ;
  • Kim, Hyeran (Department of Biological Sciences, Kangwon National University)
  • Received : 2019.10.28
  • Accepted : 2020.03.29
  • Published : 2020.04.30

Abstract

Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

Keywords

References

  1. Ahn, G., Kim, H., Kim, D.H., Hanh, H., Yoon, Y., Singaram, I., Wijesinghe, K.J., Johnson, K.A., Zhuang, X., Liang, Z., et al. (2017). SH3 Domain-Containing Protein 2 plays a crucial role at the step of membrane tubulation during cell plate formation. Plant Cell 29, 1388-1405. https://doi.org/10.1105/tpc.17.00108
  2. Aoyagi, K., Itakura, M., Fukutomi, T., Nishiwaki, C., Nakamichi, Y., Torii, S., Makiyama, T., Harada, A., and Ohara-Imaizumi, M. (2018). VAMP7 regulates autophagosome formation by supporting Atg9a functions in pancreatic beta-cells from male mice. Endocrinology 159, 3674-3688. https://doi.org/10.1210/en.2018-00447
  3. Arora, S., Saarloos, I., Kooistra, R., van de Bospoort, R., Verhage, M., and Toonen, R.F. (2017). SNAP-25 gene family members differentially support secretory vesicle fusion. J. Cell Sci. 130, 1877-1889. https://doi.org/10.1242/jcs.201889
  4. Bao, Y.M., Wang, J.F., Huang, J., and Zhang, H.S. (2008). Molecular cloning and characterization of a novel SNAP25-type protein gene OsSNAP32 in rice (Oryza sativa L.). Mol. Biol. Rep. 35, 145-152. https://doi.org/10.1007/s11033-007-9064-8
  5. Bar, M., Aharon, M., Benjamin, S., Rotblat, B., Horowitz, M., and Avni, A. (2008). AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. Plant J. 55, 1025-1038. https://doi.org/10.1111/j.1365-313X.2008.03571.x
  6. Bock, J.B., Matern, H.T., Peden, A.A., and Scheller, R.H. (2001). A genomic perspective on membrane compartment organization. Nature 409, 839-841. https://doi.org/10.1038/35057024
  7. Cao, L.G. and Wang, Y.L. (1990). Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J. Cell Biol. 110, 1089-1095. https://doi.org/10.1083/jcb.110.4.1089
  8. Chandra, S., Halder, P., Kumar, M., and Mukhopadhyay, K. (2017). Genomewide identification, cloning and characterization of SNARE genes in bread wheat (Triticum aestivum L.) and their response to leaf rust. Agri Gene 3, 12-20. https://doi.org/10.1016/j.aggene.2016.11.002
  9. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973-977. https://doi.org/10.1038/nature02076
  10. Corona, A.K., Saulsbery, H.M., Corona Velazquez, A.F., and Jackson, W.T. (2018). Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit. Cell Rep. 22, 3304-3314. https://doi.org/10.1016/j.celrep.2018.03.003
  11. Diao, J., Liu, R., Rong, Y., Zhao, M., Zhang, J., Lai, Y., Zhou, Q., Wilz, L.M., Li, J., Vivona, S., et al. (2015). ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563-566. https://doi.org/10.1038/nature14147
  12. Dodson, M., Liu, P., Jiang, T., Ambrose, A.J., Luo, G., Rojo de la Vega, M., Cholanians, A.B., Wong, P.K., Chapman, E., and Zhang, D.D. (2018). Increased O-GlcNAcylation of SNAP29 drives arsenic-induced autophagic dysfunction. Mol. Cell. Biol. 38, e00595-17.
  13. Ebine, K., Okatani, Y., Uemura, T., Goh, T., Shoda, K., Niihama, M., Morita, M.T., Spitzer, C., Otegui, M.S., Nakano, A., et al. (2008). A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20, 3006-3021. https://doi.org/10.1105/tpc.107.057711
  14. El Kasmi, F., Krause, C., Hiller, U., Stierhof, Y.D., Mayer, U., Conner, L., Kong, L., Reichardt, I., Sanderfoot, A.A., and Jurgens, G. (2013). SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol. Biol. Cell 24, 1593-1601. https://doi.org/10.1091/mbc.e13-02-0074
  15. Eschen-Lippold, L., Landgraf, R., Smolka, U., Schulze, S., Heilmann, M., Heilmann, I., Hause, G., and Rosahl, S. (2012). Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression. New Phytol. 193, 985-996. https://doi.org/10.1111/j.1469-8137.2011.04024.x
  16. Gavrin, A., Chiasson, D., Ovchinnikova, E., Kaiser, B.N., Bisseling, T., and Fedorova, E.E. (2016). VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytol. 210, 1011-1021. https://doi.org/10.1111/nph.13837
  17. Gonzalo, S. and Linder, M.E. (1998). SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol. Biol. Cell 9, 585-597. https://doi.org/10.1091/mbc.9.3.585
  18. Gonzalo, S., Greentree, W.K., and Linder, M.E. (1999). SNAP-25 is targeted to the plasma membrane through a novel membrane-binding domain. J. Biol. Chem. 274, 21313-21318. https://doi.org/10.1074/jbc.274.30.21313
  19. Gromley, A., Yeaman, C., Rosa, J., Redick, S., Chen, C.T., Mirabelle, S., Guha, M., Sillibourne, J., and Doxsey, S.J. (2005). Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesiclemediated abscission. Cell 123, 75-87. https://doi.org/10.1016/j.cell.2005.07.027
  20. Hachez, C., Laloux, T., Reinhardt, H., Cavez, D., Degand, H., Grefen, C., De Rycke, R., Inzé, D., Blatt, M.R., Russinova, E., et al. (2014). Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. Plant Cell 26, 3132-3147. https://doi.org/10.1105/tpc.114.127159
  21. Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T.C., and Niemann, H. (1994). Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051-5061. https://doi.org/10.1002/j.1460-2075.1994.tb06834.x
  22. Heese, M., Gansel, X., Sticher, L., Wick, P., Grebe, M., Granier, F., and Jurgens, G. (2001). Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J. Cell Biol. 155, 239-249. https://doi.org/10.1083/jcb.200107126
  23. Holt, M., Varoqueaux, F., Wiederhold, K., Takamori, S., Urlaub, H., Fasshauer, D., and Jahn, R. (2006). Identification of SNAP-47, a novel Qbc-SNARE with ubiquitous expression. J. Biol. Chem. 281, 17076-17083. https://doi.org/10.1074/jbc.M513838200
  24. Huang, L., Yuan, P., Yu, P., Kong, Q., Xu, Z., Yan, X., Shen, Y., Yang, J., Wan, R., Hong, K., et al. (2018). O-GlcNAc-modified SNAP29 inhibits autophagymediated degradation via the disturbed SNAP29-STX17-VAMP8 complex and exacerbates myocardial injury in type I diabetic rats. Int. J. Mol. Med. 42, 3278-3290.
  25. Ichikawa, M., Hirano, T., Enami, K., Fuselier, T., Kato, N., Kwon, C., Voigt, B., Schulze-Lefert, P., Baluska, F., and Sato, M.H. (2014). Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. Plant Cell Physiol. 55, 790-800. https://doi.org/10.1093/pcp/pcu048
  26. Itakura, E., Kishi-Itakura, C., and Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269. https://doi.org/10.1016/j.cell.2012.11.001
  27. Ivanov, S., Fedorova, E.E., Limpens, E., De Mita, S., Genre, A., Bonfante, P., and Bisseling, T. (2012). Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl. Acad. Sci. U. S. A. 109, 8316-8321. https://doi.org/10.1073/pnas.1200407109
  28. Kargul, J., Gansel, X., Tyrrell, M., Sticher, L., and Blatt, M.R. (2001). Proteinbinding partners of the tobacco syntaxin NtSyr1. FEBS Lett. 508, 253-258. https://doi.org/10.1016/S0014-5793(01)03089-7
  29. Kim, H., O'Connell, R., Maekawa-Yoshikawa, M., Uemura, T., Neumann, U., and Schulze-Lefert, P. (2014). The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J. 79, 835-847. https://doi.org/10.1111/tpj.12591
  30. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). Mega X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549. https://doi.org/10.1093/molbev/msy096
  31. Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., et al. (2008). Co-option of a default secretory pathway for plant immune responses. Nature 451, 835-840. https://doi.org/10.1038/nature06545
  32. Lauber, M.H., Waizenegger, I., Steinmann, T., Schwarz, H., Mayer, U., Hwang, I., Lukowitz, W., and Jurgens, G. (1997). The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J. Cell Biol. 139, 1485-1493. https://doi.org/10.1083/jcb.139.6.1485
  33. Leshem, Y., Golani, Y., Kaye, Y., and Levine, A. (2010). Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. J. Exp. Bot. 61, 2615-2622. https://doi.org/10.1093/jxb/erq099
  34. Li, W.M., Webb, S.E., Lee, K.W., and Miller, A.L. (2006). Recruitment and SNARE-mediated fusion of vesicles in furrow membrane remodeling during cytokinesis in zebrafish embryos. Exp. Cell Res. 312, 3260-3275. https://doi.org/10.1016/j.yexcr.2006.06.028
  35. Lin, S.X., Grant, B., Hirsh, D., and Maxfield, F.R. (2001). Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat. Cell Biol. 3, 567-572. https://doi.org/10.1038/35078543
  36. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., et al. (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180-1183. https://doi.org/10.1126/science.1119409
  37. Lipka, V., Kwon, C., and Panstruga, R. (2007). SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23, 147-174. https://doi.org/10.1146/annurev.cellbio.23.090506.123529
  38. Liu, L., Li, C., Teo, Z.W.N., Zhang, B., and Yu, H. (2019). The MCTP-SNARE complex regulates florigen transport in Arabidopsis. Plant Cell 31, 2475-2490. https://doi.org/10.1105/tpc.18.00960
  39. Luo, J., Zhang, H., He, W., Zhang, Y., Cao, W., Zhang, H., and Bao, Y. (2016). OsSNAP32, a SNAP25-type SNARE protein-encoding gene from rice, enhanced resistance to blast fungus. Plant Growth Regul. 80, 37-45. https://doi.org/10.1007/s10725-016-0152-4
  40. Mayank, P., Grossman, J., Wuest, S., Boisson-Dernier, A., Roschitzki, B., Nanni, P., Nuhse, T., and Grossniklaus, U. (2012). Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J. 72, 89-101. https://doi.org/10.1111/j.1365-313X.2012.05061.x
  41. Mierzwa, B. and Gerlich, D.W. (2014). Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31, 525-538. https://doi.org/10.1016/j.devcel.2014.11.006
  42. Mohamud, Y., Shi, J., Qu, J., Poon, T., Xue, Y.C., Deng, H., Zhang, J., and Luo, H. (2018). Enteroviral infection inhibits autophagic flux via disruption of the SNARE complex to enhance viral replication. Cell Rep. 22, 3292-3303. https://doi.org/10.1016/j.celrep.2018.02.090
  43. Mollinedo, F., Calafat, J., Janssen, H., Martin-Martin, B., Canchado, J., Nabokina, S.M., and Gajate, C. (2006). Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. J. Immunol. 177, 2831-2841. https://doi.org/10.4049/jimmunol.177.5.2831
  44. Morelli, E., Ginefra, P., Mastrodonato, V., Beznoussenko, G.V., Rusten, T.E., Bilder, D., Stenmark, H., Mironov, A.A., and Vaccari, T. (2014). Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 10, 2251-2268. https://doi.org/10.4161/15548627.2014.981913
  45. Morelli, E., Mastrodonato, V., Beznoussenko, G.V., Mironov, A.A., Tognon, E., and Vaccari, T. (2016). An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J. 35, 2223-2237. https://doi.org/10.15252/embj.201693991
  46. Nagy, G., Milosevic, I., Mohrmann, R., Wiederhold, K., Walter, A.M., and Sorensen, J.B. (2008). The SNAP-25 linker as an adaptation toward fast exocytosis. Mol. Biol. Cell 19, 3769-3781. https://doi.org/10.1091/mbc.e07-12-1218
  47. Niemann, H., Blasi, J., and Jahn, R. (1994). Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol. 4, 179-185. https://doi.org/10.1016/0962-8924(94)90203-8
  48. Nisa, Z.U., Mallano, A.I., Yu, Y., Chen, C., Duan, X., Amanullah, S., Kousar, A., Baloch, A.W., Sun, X., Tabys, D., et al. (2017). GsSNAP33, a novel Glycine soja SNAP25-type protein gene: improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 119, 9-20. https://doi.org/10.1016/j.plaphy.2017.07.029
  49. Oyler, G.A., Higgins, G.A., Hart, R.A., Battenberg, E., Billingsley, M., Bloom, F.E., and Wilson, M.C. (1989). The identification of a novel synaptosomalassociated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109, 3039-3052. https://doi.org/10.1083/jcb.109.6.3039
  50. Pagan, J.K., Wylie, F.G., Joseph, S., Widberg, C., Bryant, N.J., James, D.E., and Stow, J.L. (2003). The t-SNARE syntaxin 4 is regulated during macrophage activation to function in membrane traffic and cytokine secretion. Curr. Biol. 13, 156-160. https://doi.org/10.1016/S0960-9822(03)00006-X
  51. Pajonk, S., Kwon, C., Clemens, N., Panstruga, R., and Schulze-lefert, P. (2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283, 26974-26984. https://doi.org/10.1074/jbc.M805236200
  52. Park, M., Krause, C., Karnahl, M., Reichardt, I., El Kasmi, F., Mayer, U., Stierhof, Y.D., Hiller, U., Strompen, G., Bayer, M., et al. (2018). Concerted action of evolutionarily ancient and novel SNARE complexes in floweringplant cytokinesis. Dev. Cell 44, 500-511.e4. https://doi.org/10.1016/j.devcel.2017.12.027
  53. Rapaport, D., Lugassy, Y., Sprecher, E., and Horowitz, M. (2010). Loss of SNAP29 impairs endocytic recycling and cell motility. PLoS One 5, e9759. https://doi.org/10.1371/journal.pone.0009759
  54. Rapaport, D., Fichtman, B., Weidberg, H., Sprecher, E., and Horowitz, M. (2018). NEK3-mediated SNAP29 phosphorylation modulates its membrane association and SNARE fusion dependent processes. Biochem. Biophys. Res. Commun. 497, 605-611. https://doi.org/10.1016/j.bbrc.2018.02.116
  55. Ravichandran, V., Chawla, A., and Roche, P.A. (1996). Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J. Biol. Chem. 271, 13300-13303. https://doi.org/10.1074/jbc.271.23.13300
  56. Reales, E., Mora-Lopez, F., Rivas, V., Garcia-Poley, A., Brieva, J.A., and Campos-Caro, A. (2005). Identification of soluble N-ethylmaleimidesensitive factor attachment protein receptor exocytotic machinery in human plasma cells: SNAP-23 is essential for antibody secretion. J. Immunol. 175, 6686-6693. https://doi.org/10.4049/jimmunol.175.10.6686
  57. Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W., and Baginsky, S. (2009). Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 150, 889-903. https://doi.org/10.1104/pp.109.138677
  58. Rotem-Yehudar, R., Galperin, E., and Horowitz, M. (2001). Association of insulin-like growth factor 1 receptor with EHD1 and SNAP29. J. Biol. Chem. 276, 33054-33060. https://doi.org/10.1074/jbc.M009913200
  59. Saito, C. and Ueda, T. (2009). Chapter 4 Functions of RAB and SNARE proteins in plant life. In International Review of Cell and Molecular Biology, K.W. Jeon, ed. (Amsterdam, The Netherlands: Academic Press), pp. 183-233.
  60. Sanmartin, M., Ordonez, A., Sohn, E.J., Robert, S., Sanchez-Serrano, J.J., Surpin, M.A., Raikhel, N.V., and Rojo, E. (2007). Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 104, 3645-3650. https://doi.org/10.1073/pnas.0611147104
  61. Schilde, C., Lutter, K., Kissmehl, R., and Plattner, H. (2008). Molecular identification of a SNAP-25-like SNARE protein in Paramecium. Eukaryot. Cell 7, 1387-1402. https://doi.org/10.1128/EC.00012-08
  62. Sharma, K., Pant, S.R., McNeece, B.T., Lawrence, G.W., and Klink, V.P. (2016). Co-regulation of the Glycine max soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE)-containing regulon occurs during defense to a root pathogen. J. Plant Interact. 11, 74-93. https://doi.org/10.1080/17429145.2016.1195891
  63. Singh, D., Yadav, N.S., Tiwari, V., Agarwal, P.K., and Jha, B. (2016). A SNARElike superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery. Front. Plant Sci. 7, 737.
  64. Sogawa, A., Yamazaki, A., Yamasaki, H., Komi, M., Manabe, T., Tajima, S., Hayashi, M., and Nomura, M. (2018). SNARE proteins LjVAMP72a and LjVAMP72b are required for root symbiosis and root hair formation in Lotus japonicus. Front. Plant Sci. 9, 1992. https://doi.org/10.3389/fpls.2018.01992
  65. Steegmaier, M., Yang, B., Yoo, J.S., Huang, B., Shen, M., Yu, S., Luo, Y., and Scheller, R.H. (1998). Three novel proteins of the syntaxin/SNAP-25 family. J. Biol. Chem. 273, 34171-34179. https://doi.org/10.1074/jbc.273.51.34171
  66. Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., Lipka, V., and Somerville, S. (2006). Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18, 731-746. https://doi.org/10.1105/tpc.105.038372
  67. Surpin, M., Zheng, H., Morita, M.T., Saito, C., Avila, E., Blakeslee, J.J., Bandyopadhyay, A., Kovaleva, V., Carter, D., Murphy, A., et al. (2003). The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15, 2885-2899. https://doi.org/10.1105/tpc.016121
  68. Takats, S., Nagy, P., Varga, A., Pircs, K., Karpati, M., Varga, K., Kovacs, A.L., Hegedus, K., and Juhasz, G. (2013). Autophagosomal Syntaxin17- dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201, 531-539. https://doi.org/10.1083/jcb.201211160
  69. Volker, A., Stierhof, Y.D., and Jurgens, G. (2001). Cell cycle-independent expression of the Arabidopsis cytokinesis-specific syntaxin KNOLLE results in mistargeting to the plasma membrane and is not sufficient for cytokinesis. J. Cell Sci. 114, 3001-3012. https://doi.org/10.1242/jcs.114.16.3001
  70. Wang, P., Sun, Y., Pei, Y., Li, X., Zhang, X., Li, F., and Hou, Y. (2018). GhSNAP33, a t-SNARE protein from Gossypium hirsutum, mediates resistance to Verticillium dahliae infection and tolerance to drought stress. Front. Plant Sci. 9, 896. https://doi.org/10.3389/fpls.2018.00896
  71. Wang, P., Zhang, X., Ma, X., Sun, Y., Liu, N., Li, F., and Hou, Y. (2017). Identification of CkSNAP33, a gene encoding synaptosomal-associated protein from Cynanchum komarovii, that enhances Arabidopsis resistance to Verticillium dahliae. PLoS One 12, e0178101. https://doi.org/10.1371/journal.pone.0178101
  72. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISSMODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303. https://doi.org/10.1093/nar/gky427
  73. Weimbs, T., Low, S.H., Chapin, S.J., Mostov, K.E., Bucher, P., and Hofmann, K. (1997). A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. U. S. A. 94, 3046-3051. https://doi.org/10.1073/pnas.94.7.3046
  74. Wick, P., Gansel, X., Oulevey, C., Page, V., Studer, I., Durst, M., and Sticher, L. (2003). The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation. Plant Physiol. 132, 343-351. https://doi.org/10.1104/pp.102.012633
  75. Yano, D., Sato, M., Saito, C., Sato, M.H., Morita, M.T., and Tasaka, M. (2003). A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravitysensing cells is important for Arabidopsis shoot gravitropism. Proc. Natl. Acad. Sci. U. S. A. 100, 8589-8594. https://doi.org/10.1073/pnas.1430749100
  76. Yi, C., Park, S., Yun, H.S., and Kwon, C. (2013). Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application. J. Plant Physiol. 170, 529-533. https://doi.org/10.1016/j.jplph.2012.11.001
  77. Zhao, N., Hashida, H., Takahashi, N., and Sakaki, Y. (1994). Cloning and sequence analysis of the human SNAP25 cDNA. Gene 145, 313-314. https://doi.org/10.1016/0378-1119(94)90027-2
  78. Zhu, J., Gong, Z., Zhang, C., Song, C.P., Damsz, B., Inan, G., Koiwa, H., Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (2002). OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14, 3009-3028. https://doi.org/10.1105/tpc.006981

Cited by

  1. The Exocytosis Associated SNAP25-Type Protein, SlSNAP33, Increases Salt Stress Tolerance by Modulating Endocytosis in Tomato vol.10, pp.7, 2020, https://doi.org/10.3390/plants10071322