References
- Ahn, G., Kim, H., Kim, D.H., Hanh, H., Yoon, Y., Singaram, I., Wijesinghe, K.J., Johnson, K.A., Zhuang, X., Liang, Z., et al. (2017). SH3 Domain-Containing Protein 2 plays a crucial role at the step of membrane tubulation during cell plate formation. Plant Cell 29, 1388-1405. https://doi.org/10.1105/tpc.17.00108
- Aoyagi, K., Itakura, M., Fukutomi, T., Nishiwaki, C., Nakamichi, Y., Torii, S., Makiyama, T., Harada, A., and Ohara-Imaizumi, M. (2018). VAMP7 regulates autophagosome formation by supporting Atg9a functions in pancreatic beta-cells from male mice. Endocrinology 159, 3674-3688. https://doi.org/10.1210/en.2018-00447
- Arora, S., Saarloos, I., Kooistra, R., van de Bospoort, R., Verhage, M., and Toonen, R.F. (2017). SNAP-25 gene family members differentially support secretory vesicle fusion. J. Cell Sci. 130, 1877-1889. https://doi.org/10.1242/jcs.201889
- Bao, Y.M., Wang, J.F., Huang, J., and Zhang, H.S. (2008). Molecular cloning and characterization of a novel SNAP25-type protein gene OsSNAP32 in rice (Oryza sativa L.). Mol. Biol. Rep. 35, 145-152. https://doi.org/10.1007/s11033-007-9064-8
- Bar, M., Aharon, M., Benjamin, S., Rotblat, B., Horowitz, M., and Avni, A. (2008). AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. Plant J. 55, 1025-1038. https://doi.org/10.1111/j.1365-313X.2008.03571.x
- Bock, J.B., Matern, H.T., Peden, A.A., and Scheller, R.H. (2001). A genomic perspective on membrane compartment organization. Nature 409, 839-841. https://doi.org/10.1038/35057024
- Cao, L.G. and Wang, Y.L. (1990). Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J. Cell Biol. 110, 1089-1095. https://doi.org/10.1083/jcb.110.4.1089
- Chandra, S., Halder, P., Kumar, M., and Mukhopadhyay, K. (2017). Genomewide identification, cloning and characterization of SNARE genes in bread wheat (Triticum aestivum L.) and their response to leaf rust. Agri Gene 3, 12-20. https://doi.org/10.1016/j.aggene.2016.11.002
- Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973-977. https://doi.org/10.1038/nature02076
- Corona, A.K., Saulsbery, H.M., Corona Velazquez, A.F., and Jackson, W.T. (2018). Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit. Cell Rep. 22, 3304-3314. https://doi.org/10.1016/j.celrep.2018.03.003
- Diao, J., Liu, R., Rong, Y., Zhao, M., Zhang, J., Lai, Y., Zhou, Q., Wilz, L.M., Li, J., Vivona, S., et al. (2015). ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563-566. https://doi.org/10.1038/nature14147
- Dodson, M., Liu, P., Jiang, T., Ambrose, A.J., Luo, G., Rojo de la Vega, M., Cholanians, A.B., Wong, P.K., Chapman, E., and Zhang, D.D. (2018). Increased O-GlcNAcylation of SNAP29 drives arsenic-induced autophagic dysfunction. Mol. Cell. Biol. 38, e00595-17.
- Ebine, K., Okatani, Y., Uemura, T., Goh, T., Shoda, K., Niihama, M., Morita, M.T., Spitzer, C., Otegui, M.S., Nakano, A., et al. (2008). A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20, 3006-3021. https://doi.org/10.1105/tpc.107.057711
- El Kasmi, F., Krause, C., Hiller, U., Stierhof, Y.D., Mayer, U., Conner, L., Kong, L., Reichardt, I., Sanderfoot, A.A., and Jurgens, G. (2013). SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol. Biol. Cell 24, 1593-1601. https://doi.org/10.1091/mbc.e13-02-0074
- Eschen-Lippold, L., Landgraf, R., Smolka, U., Schulze, S., Heilmann, M., Heilmann, I., Hause, G., and Rosahl, S. (2012). Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression. New Phytol. 193, 985-996. https://doi.org/10.1111/j.1469-8137.2011.04024.x
- Gavrin, A., Chiasson, D., Ovchinnikova, E., Kaiser, B.N., Bisseling, T., and Fedorova, E.E. (2016). VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytol. 210, 1011-1021. https://doi.org/10.1111/nph.13837
- Gonzalo, S. and Linder, M.E. (1998). SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol. Biol. Cell 9, 585-597. https://doi.org/10.1091/mbc.9.3.585
- Gonzalo, S., Greentree, W.K., and Linder, M.E. (1999). SNAP-25 is targeted to the plasma membrane through a novel membrane-binding domain. J. Biol. Chem. 274, 21313-21318. https://doi.org/10.1074/jbc.274.30.21313
- Gromley, A., Yeaman, C., Rosa, J., Redick, S., Chen, C.T., Mirabelle, S., Guha, M., Sillibourne, J., and Doxsey, S.J. (2005). Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesiclemediated abscission. Cell 123, 75-87. https://doi.org/10.1016/j.cell.2005.07.027
- Hachez, C., Laloux, T., Reinhardt, H., Cavez, D., Degand, H., Grefen, C., De Rycke, R., Inzé, D., Blatt, M.R., Russinova, E., et al. (2014). Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. Plant Cell 26, 3132-3147. https://doi.org/10.1105/tpc.114.127159
- Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T.C., and Niemann, H. (1994). Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051-5061. https://doi.org/10.1002/j.1460-2075.1994.tb06834.x
- Heese, M., Gansel, X., Sticher, L., Wick, P., Grebe, M., Granier, F., and Jurgens, G. (2001). Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J. Cell Biol. 155, 239-249. https://doi.org/10.1083/jcb.200107126
- Holt, M., Varoqueaux, F., Wiederhold, K., Takamori, S., Urlaub, H., Fasshauer, D., and Jahn, R. (2006). Identification of SNAP-47, a novel Qbc-SNARE with ubiquitous expression. J. Biol. Chem. 281, 17076-17083. https://doi.org/10.1074/jbc.M513838200
- Huang, L., Yuan, P., Yu, P., Kong, Q., Xu, Z., Yan, X., Shen, Y., Yang, J., Wan, R., Hong, K., et al. (2018). O-GlcNAc-modified SNAP29 inhibits autophagymediated degradation via the disturbed SNAP29-STX17-VAMP8 complex and exacerbates myocardial injury in type I diabetic rats. Int. J. Mol. Med. 42, 3278-3290.
- Ichikawa, M., Hirano, T., Enami, K., Fuselier, T., Kato, N., Kwon, C., Voigt, B., Schulze-Lefert, P., Baluska, F., and Sato, M.H. (2014). Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. Plant Cell Physiol. 55, 790-800. https://doi.org/10.1093/pcp/pcu048
- Itakura, E., Kishi-Itakura, C., and Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269. https://doi.org/10.1016/j.cell.2012.11.001
- Ivanov, S., Fedorova, E.E., Limpens, E., De Mita, S., Genre, A., Bonfante, P., and Bisseling, T. (2012). Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl. Acad. Sci. U. S. A. 109, 8316-8321. https://doi.org/10.1073/pnas.1200407109
- Kargul, J., Gansel, X., Tyrrell, M., Sticher, L., and Blatt, M.R. (2001). Proteinbinding partners of the tobacco syntaxin NtSyr1. FEBS Lett. 508, 253-258. https://doi.org/10.1016/S0014-5793(01)03089-7
- Kim, H., O'Connell, R., Maekawa-Yoshikawa, M., Uemura, T., Neumann, U., and Schulze-Lefert, P. (2014). The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J. 79, 835-847. https://doi.org/10.1111/tpj.12591
- Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). Mega X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549. https://doi.org/10.1093/molbev/msy096
- Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., et al. (2008). Co-option of a default secretory pathway for plant immune responses. Nature 451, 835-840. https://doi.org/10.1038/nature06545
- Lauber, M.H., Waizenegger, I., Steinmann, T., Schwarz, H., Mayer, U., Hwang, I., Lukowitz, W., and Jurgens, G. (1997). The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J. Cell Biol. 139, 1485-1493. https://doi.org/10.1083/jcb.139.6.1485
- Leshem, Y., Golani, Y., Kaye, Y., and Levine, A. (2010). Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. J. Exp. Bot. 61, 2615-2622. https://doi.org/10.1093/jxb/erq099
- Li, W.M., Webb, S.E., Lee, K.W., and Miller, A.L. (2006). Recruitment and SNARE-mediated fusion of vesicles in furrow membrane remodeling during cytokinesis in zebrafish embryos. Exp. Cell Res. 312, 3260-3275. https://doi.org/10.1016/j.yexcr.2006.06.028
- Lin, S.X., Grant, B., Hirsh, D., and Maxfield, F.R. (2001). Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat. Cell Biol. 3, 567-572. https://doi.org/10.1038/35078543
- Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., et al. (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180-1183. https://doi.org/10.1126/science.1119409
- Lipka, V., Kwon, C., and Panstruga, R. (2007). SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23, 147-174. https://doi.org/10.1146/annurev.cellbio.23.090506.123529
- Liu, L., Li, C., Teo, Z.W.N., Zhang, B., and Yu, H. (2019). The MCTP-SNARE complex regulates florigen transport in Arabidopsis. Plant Cell 31, 2475-2490. https://doi.org/10.1105/tpc.18.00960
- Luo, J., Zhang, H., He, W., Zhang, Y., Cao, W., Zhang, H., and Bao, Y. (2016). OsSNAP32, a SNAP25-type SNARE protein-encoding gene from rice, enhanced resistance to blast fungus. Plant Growth Regul. 80, 37-45. https://doi.org/10.1007/s10725-016-0152-4
- Mayank, P., Grossman, J., Wuest, S., Boisson-Dernier, A., Roschitzki, B., Nanni, P., Nuhse, T., and Grossniklaus, U. (2012). Characterization of the phosphoproteome of mature Arabidopsis pollen. Plant J. 72, 89-101. https://doi.org/10.1111/j.1365-313X.2012.05061.x
- Mierzwa, B. and Gerlich, D.W. (2014). Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31, 525-538. https://doi.org/10.1016/j.devcel.2014.11.006
- Mohamud, Y., Shi, J., Qu, J., Poon, T., Xue, Y.C., Deng, H., Zhang, J., and Luo, H. (2018). Enteroviral infection inhibits autophagic flux via disruption of the SNARE complex to enhance viral replication. Cell Rep. 22, 3292-3303. https://doi.org/10.1016/j.celrep.2018.02.090
- Mollinedo, F., Calafat, J., Janssen, H., Martin-Martin, B., Canchado, J., Nabokina, S.M., and Gajate, C. (2006). Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. J. Immunol. 177, 2831-2841. https://doi.org/10.4049/jimmunol.177.5.2831
- Morelli, E., Ginefra, P., Mastrodonato, V., Beznoussenko, G.V., Rusten, T.E., Bilder, D., Stenmark, H., Mironov, A.A., and Vaccari, T. (2014). Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila. Autophagy 10, 2251-2268. https://doi.org/10.4161/15548627.2014.981913
- Morelli, E., Mastrodonato, V., Beznoussenko, G.V., Mironov, A.A., Tognon, E., and Vaccari, T. (2016). An essential step of kinetochore formation controlled by the SNARE protein Snap29. EMBO J. 35, 2223-2237. https://doi.org/10.15252/embj.201693991
- Nagy, G., Milosevic, I., Mohrmann, R., Wiederhold, K., Walter, A.M., and Sorensen, J.B. (2008). The SNAP-25 linker as an adaptation toward fast exocytosis. Mol. Biol. Cell 19, 3769-3781. https://doi.org/10.1091/mbc.e07-12-1218
- Niemann, H., Blasi, J., and Jahn, R. (1994). Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol. 4, 179-185. https://doi.org/10.1016/0962-8924(94)90203-8
- Nisa, Z.U., Mallano, A.I., Yu, Y., Chen, C., Duan, X., Amanullah, S., Kousar, A., Baloch, A.W., Sun, X., Tabys, D., et al. (2017). GsSNAP33, a novel Glycine soja SNAP25-type protein gene: improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 119, 9-20. https://doi.org/10.1016/j.plaphy.2017.07.029
- Oyler, G.A., Higgins, G.A., Hart, R.A., Battenberg, E., Billingsley, M., Bloom, F.E., and Wilson, M.C. (1989). The identification of a novel synaptosomalassociated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109, 3039-3052. https://doi.org/10.1083/jcb.109.6.3039
- Pagan, J.K., Wylie, F.G., Joseph, S., Widberg, C., Bryant, N.J., James, D.E., and Stow, J.L. (2003). The t-SNARE syntaxin 4 is regulated during macrophage activation to function in membrane traffic and cytokine secretion. Curr. Biol. 13, 156-160. https://doi.org/10.1016/S0960-9822(03)00006-X
- Pajonk, S., Kwon, C., Clemens, N., Panstruga, R., and Schulze-lefert, P. (2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283, 26974-26984. https://doi.org/10.1074/jbc.M805236200
- Park, M., Krause, C., Karnahl, M., Reichardt, I., El Kasmi, F., Mayer, U., Stierhof, Y.D., Hiller, U., Strompen, G., Bayer, M., et al. (2018). Concerted action of evolutionarily ancient and novel SNARE complexes in floweringplant cytokinesis. Dev. Cell 44, 500-511.e4. https://doi.org/10.1016/j.devcel.2017.12.027
- Rapaport, D., Lugassy, Y., Sprecher, E., and Horowitz, M. (2010). Loss of SNAP29 impairs endocytic recycling and cell motility. PLoS One 5, e9759. https://doi.org/10.1371/journal.pone.0009759
- Rapaport, D., Fichtman, B., Weidberg, H., Sprecher, E., and Horowitz, M. (2018). NEK3-mediated SNAP29 phosphorylation modulates its membrane association and SNARE fusion dependent processes. Biochem. Biophys. Res. Commun. 497, 605-611. https://doi.org/10.1016/j.bbrc.2018.02.116
- Ravichandran, V., Chawla, A., and Roche, P.A. (1996). Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J. Biol. Chem. 271, 13300-13303. https://doi.org/10.1074/jbc.271.23.13300
- Reales, E., Mora-Lopez, F., Rivas, V., Garcia-Poley, A., Brieva, J.A., and Campos-Caro, A. (2005). Identification of soluble N-ethylmaleimidesensitive factor attachment protein receptor exocytotic machinery in human plasma cells: SNAP-23 is essential for antibody secretion. J. Immunol. 175, 6686-6693. https://doi.org/10.4049/jimmunol.175.10.6686
- Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W., and Baginsky, S. (2009). Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 150, 889-903. https://doi.org/10.1104/pp.109.138677
- Rotem-Yehudar, R., Galperin, E., and Horowitz, M. (2001). Association of insulin-like growth factor 1 receptor with EHD1 and SNAP29. J. Biol. Chem. 276, 33054-33060. https://doi.org/10.1074/jbc.M009913200
- Saito, C. and Ueda, T. (2009). Chapter 4 Functions of RAB and SNARE proteins in plant life. In International Review of Cell and Molecular Biology, K.W. Jeon, ed. (Amsterdam, The Netherlands: Academic Press), pp. 183-233.
- Sanmartin, M., Ordonez, A., Sohn, E.J., Robert, S., Sanchez-Serrano, J.J., Surpin, M.A., Raikhel, N.V., and Rojo, E. (2007). Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 104, 3645-3650. https://doi.org/10.1073/pnas.0611147104
- Schilde, C., Lutter, K., Kissmehl, R., and Plattner, H. (2008). Molecular identification of a SNAP-25-like SNARE protein in Paramecium. Eukaryot. Cell 7, 1387-1402. https://doi.org/10.1128/EC.00012-08
- Sharma, K., Pant, S.R., McNeece, B.T., Lawrence, G.W., and Klink, V.P. (2016). Co-regulation of the Glycine max soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE)-containing regulon occurs during defense to a root pathogen. J. Plant Interact. 11, 74-93. https://doi.org/10.1080/17429145.2016.1195891
- Singh, D., Yadav, N.S., Tiwari, V., Agarwal, P.K., and Jha, B. (2016). A SNARElike superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery. Front. Plant Sci. 7, 737.
- Sogawa, A., Yamazaki, A., Yamasaki, H., Komi, M., Manabe, T., Tajima, S., Hayashi, M., and Nomura, M. (2018). SNARE proteins LjVAMP72a and LjVAMP72b are required for root symbiosis and root hair formation in Lotus japonicus. Front. Plant Sci. 9, 1992. https://doi.org/10.3389/fpls.2018.01992
- Steegmaier, M., Yang, B., Yoo, J.S., Huang, B., Shen, M., Yu, S., Luo, Y., and Scheller, R.H. (1998). Three novel proteins of the syntaxin/SNAP-25 family. J. Biol. Chem. 273, 34171-34179. https://doi.org/10.1074/jbc.273.51.34171
- Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., Lipka, V., and Somerville, S. (2006). Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18, 731-746. https://doi.org/10.1105/tpc.105.038372
- Surpin, M., Zheng, H., Morita, M.T., Saito, C., Avila, E., Blakeslee, J.J., Bandyopadhyay, A., Kovaleva, V., Carter, D., Murphy, A., et al. (2003). The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15, 2885-2899. https://doi.org/10.1105/tpc.016121
- Takats, S., Nagy, P., Varga, A., Pircs, K., Karpati, M., Varga, K., Kovacs, A.L., Hegedus, K., and Juhasz, G. (2013). Autophagosomal Syntaxin17- dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201, 531-539. https://doi.org/10.1083/jcb.201211160
- Volker, A., Stierhof, Y.D., and Jurgens, G. (2001). Cell cycle-independent expression of the Arabidopsis cytokinesis-specific syntaxin KNOLLE results in mistargeting to the plasma membrane and is not sufficient for cytokinesis. J. Cell Sci. 114, 3001-3012. https://doi.org/10.1242/jcs.114.16.3001
- Wang, P., Sun, Y., Pei, Y., Li, X., Zhang, X., Li, F., and Hou, Y. (2018). GhSNAP33, a t-SNARE protein from Gossypium hirsutum, mediates resistance to Verticillium dahliae infection and tolerance to drought stress. Front. Plant Sci. 9, 896. https://doi.org/10.3389/fpls.2018.00896
- Wang, P., Zhang, X., Ma, X., Sun, Y., Liu, N., Li, F., and Hou, Y. (2017). Identification of CkSNAP33, a gene encoding synaptosomal-associated protein from Cynanchum komarovii, that enhances Arabidopsis resistance to Verticillium dahliae. PLoS One 12, e0178101. https://doi.org/10.1371/journal.pone.0178101
- Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISSMODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303. https://doi.org/10.1093/nar/gky427
- Weimbs, T., Low, S.H., Chapin, S.J., Mostov, K.E., Bucher, P., and Hofmann, K. (1997). A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. U. S. A. 94, 3046-3051. https://doi.org/10.1073/pnas.94.7.3046
- Wick, P., Gansel, X., Oulevey, C., Page, V., Studer, I., Durst, M., and Sticher, L. (2003). The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation. Plant Physiol. 132, 343-351. https://doi.org/10.1104/pp.102.012633
- Yano, D., Sato, M., Saito, C., Sato, M.H., Morita, M.T., and Tasaka, M. (2003). A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravitysensing cells is important for Arabidopsis shoot gravitropism. Proc. Natl. Acad. Sci. U. S. A. 100, 8589-8594. https://doi.org/10.1073/pnas.1430749100
- Yi, C., Park, S., Yun, H.S., and Kwon, C. (2013). Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application. J. Plant Physiol. 170, 529-533. https://doi.org/10.1016/j.jplph.2012.11.001
- Zhao, N., Hashida, H., Takahashi, N., and Sakaki, Y. (1994). Cloning and sequence analysis of the human SNAP25 cDNA. Gene 145, 313-314. https://doi.org/10.1016/0378-1119(94)90027-2
- Zhu, J., Gong, Z., Zhang, C., Song, C.P., Damsz, B., Inan, G., Koiwa, H., Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (2002). OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14, 3009-3028. https://doi.org/10.1105/tpc.006981
Cited by
- The Exocytosis Associated SNAP25-Type Protein, SlSNAP33, Increases Salt Stress Tolerance by Modulating Endocytosis in Tomato vol.10, pp.7, 2020, https://doi.org/10.3390/plants10071322