DOI QR코드

DOI QR Code

SNAREs in Plant Biotic and Abiotic Stress Responses

  • Kwon, Chian (Department of Molecular Biology, Dankook University) ;
  • Lee, Jae-Hoon (Department of Biology Education, Pusan National University) ;
  • Yun, Hye Sup (Department of Biological Sciences, Konkuk University)
  • Received : 2019.12.31
  • Accepted : 2020.04.28
  • Published : 2020.06.30

Abstract

In eukaryotes, membraneous cellular compartmentation essentially requires vesicle trafficking for communications among distinct organelles. A donor organelle-generated vesicle releases its cargo into a target compartment by fusing two distinct vesicle and target membranes. Vesicle fusion, the final step of vesicle trafficking, is driven intrinsically by complex formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNAREs are well-conserved across eukaryotes, genomic studies revealed that plants have dramatically increased the number of SNARE genes than other eukaryotes. This increase is attributed to the sessile nature of plants, likely for more sensitive and harmonized responses to environmental stresses. In this review, we therefore try to summarize and discuss the current understanding of plant SNAREs function in responses to biotic and abiotic stresses.

Keywords

References

  1. Antonin, W., Fasshauer, D., Becker, S., Jahn, R., and Schneider, T.R. (2002). Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat. Struct. Biol. 9, 107-111. https://doi.org/10.1038/nsb746
  2. Assaad, F.F., Qiu, J.L., Youngs, H., Ehrhardt, D., Zimmerli, L., Kalde, M., Wanner, G., Peck, S.C., Edwards, H., Ramonell, K., et al. (2004). The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell 15, 5118-5129. https://doi.org/10.1091/mbc.e04-02-0140
  3. Bock, J.B., Matern, H.T., Peden, A.A., and Scheller, R.H. (2001). A genomic perspective on membrane compartment organization. Nature 409, 839-841. https://doi.org/10.1038/35057024
  4. Cao, W.L., Yu, Y., Li, M.Y., Luo, J., Wang, R.S., Tang, H.J., Huang, J., Wang, J.F., Zhang, H.S., and Bao, Y.M. (2019). OsSYP121 accumulates at fungal penetration sites and mediates host resistance to rice blast. Plant Physiol. 179, 1330-1342. https://doi.org/10.1104/pp.18.01013
  5. Chung, K.P., Zeng, Y., Li, Y., Ji, C., Xia, Y., and Jiang, L. (2018). Signal motifdependent ER export of the Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis. J. Cell Sci. 131, jcs202838. https://doi.org/10.1242/jcs.202838
  6. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973-977. https://doi.org/10.1038/nature02076
  7. Dodds, P.N. and Rathjen, J.P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539-548. https://doi.org/10.1038/nrg2812
  8. Ebine, K., Fujimoto, M., Okatani, Y., Nishiyama, T., Goh, T., Ito, E., Dainobu, T., Nishitani, A., Uemura, T., Sato, M.H., et al. (2011). A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat. Cell Biol. 13, 853-859. https://doi.org/10.1038/ncb2270
  9. Ebine, K., Okatani, Y., Uemura, T., Goh, T., Shoda, K., Niihama, M., Morita, M.T., Spitzer, C., Otegui, M.S., Nakano, A., et al. (2008). A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20, 3006-3021. https://doi.org/10.1105/tpc.107.057711
  10. Eisenach, C., Chen, Z.H., Grefen, C., and Blatt, M.R. (2012). The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K(+) channel activity with vegetative growth. Plant J. 69, 241-251. https://doi.org/10.1111/j.1365-313X.2011.04786.x
  11. El Kasmi, F., Krause, C., Hiller, U., Stierhof, Y.D., Mayer, U., Conner, L., Kong, L., Reichardt, I., Sanderfoot, A.A., and Jurgens, G. (2013). SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol. Biol. Cell 24, 1593-1601. https://doi.org/10.1091/mbc.e13-02-0074
  12. Fasshauer, D., Sutton, R.B., Brunger, A.T., and Jahn, R. (1998). Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. U. S. A. 95, 15781-15786. https://doi.org/10.1073/pnas.95.26.15781
  13. Fuchs, R., Kopischke, M., Klapprodt, C., Hause, G., Meyer, A.J., Schwarzlander, M., Fricker, M.D., and Lipka, V. (2016). Immobilized subpopulations of leaf epidermal mitochondria mediate PENETRATION2-dependent pathogen entry control in Arabidopsis. Plant Cell 28, 130-145. https://doi.org/10.1105/tpc.15.00887
  14. Hachez, C., Laloux, T., Reinhardt, H., Cavez, D., Degand, H., Grefen, C., De Rycke, R., Inze, D., Blatt, M.R., Russinova, E., et al. (2014). Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. Plant Cell 26, 3132-3147. https://doi.org/10.1105/tpc.114.127159
  15. Hanson, P.I., Heuser, J.E., and Jahn, R. (1997). Neurotransmitter release - four years of SNARE complexes. Curr. Opin. Neurobiol. 7, 310-315. https://doi.org/10.1016/S0959-4388(97)80057-8
  16. Heese, M., Gansel, X., Sticher, L., Wick, P., Grebe, M., Granier, F., and Jurgens, G. (2001). Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J. Cell Biol. 155, 239-249. https://doi.org/10.1083/jcb.200107126
  17. Hong, W. (2005). SNAREs and traffic. Biochim. Biophys. Acta 1744, 120-144. https://doi.org/10.1016/j.bbamcr.2005.03.014
  18. Honsbein, A., Sokolovski, S., Grefen, C., Campanoni, P., Pratelli, R., Panaque, M., Chen, Z., Johansson, I., and Blatt, M.R. (2009). A tripartite SNARE-$K^+$ channel complex mediates in channel-dependent $K^+$ nutrition in Arabidopsis. Plant Cell 21, 2859-2877. https://doi.org/10.1105/tpc.109.066118
  19. Jahn, R. and Scheller, R.H. (2006). SNAREs--engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631-643. https://doi.org/10.1038/nrm2002
  20. Jones, J.D. and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. https://doi.org/10.1038/nature05286
  21. Kalde, M., Nuhse, T.S., Findlay, K., and Peck, S.C. (2007). The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. U. S. A. 104, 11850-11855. https://doi.org/10.1073/pnas.0701083104
  22. Karnik, R., Grefen, C., Bayne, R., Honsbein, A., Kohler, T., Kioumourtzoglou, D., Williams, M., Bryant, N.J., and Blatt, M.R. (2013). Arabidopsis Sec1/ Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic. Plant Cell 25, 1368-1382. https://doi.org/10.1105/tpc.112.108506
  23. Kim, H., O’Connell, R., Maekawa-Yoshikawa, M., Uemura, T., Neumann, U., and Schulze-Lefert, P. (2014). The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J. 79, 835-847. https://doi.org/10.1111/tpj.12591
  24. Kim, S.J. and Bassham, D.C. (2011). TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis. Plant Physiol. 156, 514-526. https://doi.org/10.1104/pp.110.168963
  25. Kwon, C., Bednarek, P., and Schulze-Lefert, P. (2008a). Secretory pathways in plant immune responses. Plant Physiol. 147, 1575-1583. https://doi.org/10.1104/pp.108.121566
  26. Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., et al. (2008b). Co-option of a default secretory pathway for plant immune responses. Nature 451, 835-840. https://doi.org/10.1038/nature06545
  27. Kwon, H., Cho, D.J., Lee, H., Nam, M.H., Kwon, C., and Yun, H.S. (2020). CCOAOMT1, a candidate cargo secreted via VAMP721/722 secretory vesicles in Arabidopsis. Biochem. Biophys. Res. Commun. 524, 977-982. https://doi.org/10.1016/j.bbrc.2020.02.029
  28. Lauber, M.H., Waizenegger, I., Steinmann, T., Schwarz, H., Mayer, U., Hwang, I., Lukowitz, W., and Jurgens, G. (1997). The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J. Cell Biol. 139, 1485-1493. https://doi.org/10.1083/jcb.139.6.1485
  29. Leshem, Y., Golani, Y., Kaye, Y., and Levine, A. (2010). Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. J. Exp. Bot. 61, 2615-2622. https://doi.org/10.1093/jxb/erq099
  30. Leshem, Y., Melamed-Book, N., Cagnac, O., Ronen, G., Nishri, Y., Solomon, M., Cohen, G., and Levine, A. (2006). Suppression of Arabidopsis vesicle- SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc. Natl. Acad. Sci. U. S. A. 103, 18008-18013. https://doi.org/10.1073/pnas.0604421103
  31. Leyman, B., Geelen, D., Quintero, F.J., and Blatt, M.R. (1999). A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283, 537-540. https://doi.org/10.1126/science.283.5401.537
  32. Lin, R.C. and Scheller, R.H. (2000). Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol. 16, 19-49. https://doi.org/10.1146/annurev.cellbio.16.1.19
  33. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., et al. (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180-1183. https://doi.org/10.1126/science.1119409
  34. Liu, M., Peng, Y., Li, H., Deng, L., Wang, X., and Kang, Z. (2016). TaSYP71, a Qc-SNARE, contributes to wheat resistance against Puccinia striiformis f. sp. tritici. Front. Plant Sci. 7, 544.
  35. Lukowitz, W., Mayer, U., and Jurgens, G. (1996). Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84, 61-71. https://doi.org/10.1016/S0092-8674(00)80993-9
  36. Muller, I., Wagner, W., Volker, A., Schellmann, S., Nacry, P., Kuttner, F., Schwarz-Sommer, Z., Mayer, U., and Jurgens, G. (2003). Syntaxin specificity of cytokinesis in Arabidopsis. Nat. Cell Biol. 5, 531-534. https://doi.org/10.1038/ncb991
  37. Nisa, Z.U., Mallano, A.I., Yu, Y., Chen, C., Duan, X., Amanullah, S., Kousar, A., Baloch, A.W., Sun, X., Tabys, D., et al. (2017). GsSNAP33, a novel Glycine soja SNAP25-type protein gene: improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 119, 9-20. https://doi.org/10.1016/j.plaphy.2017.07.029
  38. Pan, L., Yu, X., Shao, J., Liu, Z., Gao, T., Zheng, Y., Zeng, C., Liang, C., and Chen, C. (2019). Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean (Vigna unguiculata ssp. sesquipedalis) under salt stress. PLoS One 14, e0219799. https://doi.org/10.1371/journal.pone.0219799
  39. Pant, S.R., Matsye, P.D., McNeece, B.T., Sharma, K., Krishnavajhala, A., Lawrence, G.W., and Klink, V.P. (2014). Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines. Plant Mol. Biol. 85, 107-121. https://doi.org/10.1007/s11103-014-0172-2
  40. Park, M., Krause, C., Karnahl, M., Reichardt, I., El Kasmi, F., Mayer, U., Stierhof, Y.D., Hiller, U., Strompen, G., Bayer, M., et al. (2018). Concerted action of evolutionarily ancient and novel SNARE complexes in floweringplant cytokinesis. Dev. Cell 44, 500-511. https://doi.org/10.1016/j.devcel.2017.12.027
  41. Park, M., Touihri, S., Muller, I., Mayer, U., and Jurgens, G. (2012). Sec1/ Munc18 protein stabilizes fusion-competent syntaxin for membrane fusion in Arabidopsis cytokinesis. Dev. Cell 22, 989-1000. https://doi.org/10.1016/j.devcel.2012.03.002
  42. Piofczyk, T., Jeena, G., and Pecinka, A. (2015). Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses. Plant Physiol. Biochem. 93, 34-43. https://doi.org/10.1016/j.plaphy.2015.01.011
  43. Reichardt, I., Slane, D., El Kasmi, F., Knoll, C., Fuchs, R., Mayer, U., Lipka, V., and Jurgens, G. (2011). Mechanisms of functional specificity among plasma-membrane syntaxins in Arabidopsis. Traffic 12, 1269-1280. https://doi.org/10.1111/j.1600-0854.2011.01222.x
  44. Sanderfoot, A. (2007). Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol. 144, 6-17. https://doi.org/10.1104/pp.106.092973
  45. Singh, B., Khurana, P., Khurana, J.P., and Singh, P. (2018). Gene encoding vesicle-associated membrane protein-associated protein from Triticum aestivum (TaVAP) confers tolerance to drought stress. Cell Stress Chaperones 23, 411-428. https://doi.org/10.1007/s12192-017-0854-1
  46. Singh, D., Yadav, N.S., Tiwari, V., Agarwal, P.K., and Jha, B. (2016). A SNARElike superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K(+)/Na(+) ratio, and antioxidant cachinery. Front. Plant Sci. 7, 737.
  47. Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318-324. https://doi.org/10.1038/362318a0
  48. Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze- Lefert, P., Lipka, V., and Somerville, S. (2006). Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18, 731-746. https://doi.org/10.1105/tpc.105.038372
  49. Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347-353. https://doi.org/10.1038/26412
  50. Uemura, T., Kim, H., Saito, C., Ebine, K., Ueda, T., Schulze-Lefert, P., and Nakano, A. (2012). Qa-SNAREs localized to the trans -Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc. Natl. Acad. Sci. U. S. A. 109, 1784-1789. https://doi.org/10.1073/pnas.1115146109
  51. Uemura, T., Nakano, R.T., Takagi, J., Wang, Y., Kramer, K., Finkemeier, I., Nakagami, H., Tsuda, K., Ueda, T., Schulze-Lefert, P., et al. (2019). A Golgireleased subpopulation of the trans-Golgi network mediates protein secretion in Arabidopsis. Plant Physiol. 179, 519-532. https://doi.org/10.1104/pp.18.01228
  52. van Loon, L.C., Rep, M., and Pieterse, C.M. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  53. Waghmare, S., Lefoulon, C., Zhang, B., Liliekyte, E., Donald, N., and Blatt, M.R. (2019). $K^+$ channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol. 181, 1096-1113. https://doi.org/10.1104/pp.19.00919
  54. Waghmare, S., Liliekyte, E., Karnik, R., Goodman, J.K., Blatt, M.R., and Jones, A.M.E. (2018). SNAREs SYP121 and SYP122 mediate the secretion of distinct cargo subsets. Plant Physiol. 178, 1679-1688. https://doi.org/10.1104/pp.18.00832
  55. Wang, D., Weaver, N.D., Kesarwani, M., and Dong, X. (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science 308, 1036-1040. https://doi.org/10.1126/science.1108791
  56. Wang, P., Sun, Y., Pei, Y., Li, X., Zhang, X., Li, F., and Hou, Y. (2018). GhSNAP33, a t-SNARE protein from Gossypium hirsutum, mediates resistance to Verticillium dahliae infection and tolerance to drought stress. Front. Plant Sci. 9, 896.
  57. Wang, P., Zhang, X., Ma, X., Sun, Y., Liu, N., Li, F., and Hou, Y. (2017). Identification of CkSNAP33, a gene encoding synaptosomal-associated protein from Cynanchum komarovii, that enhances Arabidopsis resistance to Verticillium dahliae. PLoS One 12, e0178101. https://doi.org/10.1371/journal.pone.0178101
  58. Xu, Q.J., Wang, Y.L., Wei, Z.X., Yuan, H.J., Zeng, X.Q., and Tashi, N. (2017). Cloning and functional characterization of the HbSYR1 gene encoding a syntaxin-related protein in Tibetan hulless barley (Hordeum vulgare L. var. nudum HK. f.). Genet. Mol. Res. 16, gmr16038909.
  59. Xue, Y., Yang, Y., Yang, Z., Wang, X., and Guo, Y. (2018). VAMP711 is required for abscisic acid-mediated inhibition of plasma membrane H(+)- ATPase activity. Plant Physiol. 178, 1332-1343. https://doi.org/10.1104/pp.18.00499
  60. Yang, X., Liao, C.Y., Tang, J., and Bassham, D.C. (2019). Overexpression of trans-Golgi network t-SNAREs rescues vacuolar trafficking and TGN morphology defects in a putative tethering factor mutant. Plant J. 99, 703-716. https://doi.org/10.1111/tpj.14353
  61. Yi, C., Park, S., Yun, H.S., and Kwon, C. (2013). Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application. J. Plant Physiol. 170, 529-533. https://doi.org/10.1016/j.jplph.2012.11.001
  62. Yun, H.S., Kwaaitaal, M., Kato, N., Yi, C., Park, S., Sato, M.H., Schulze-Lefert, P., and Kwon, C. (2013a). Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis. Mol. Cells 35, 481-488. https://doi.org/10.1007/s10059-013-2130-2
  63. Yun, H.S. and Kwon, C. (2017). Vesicle trafficking in plant immunity. Curr. Opin. Plant Biol. 40, 34-42. https://doi.org/10.1016/j.pbi.2017.07.001
  64. Yun, H.S., Yi, C., Kwon, H., and Kwon, C. (2013b). Model for regulation of VAMP721/722-mediated secretion: growth vs. stress responses. Plant Signal. Behav. 8, e27116. https://doi.org/10.4161/psb.27116
  65. Zhang, B., Karnik, R., Wang, Y., Wallmeroth, N., Blatt, M.R., and Grefen, C. (2015). The Arabidopsis R-SNARE VAMP721 interacts with KAT1 and KC1 $K^+$ channels to moderate $K^+$ current at the plasma membrane. Plant Cell 27, 1697-1717. https://doi.org/10.1105/tpc.15.00305
  66. Zhang, X., Zhao, H., Gao, S., Wang, W.C., Katiyar-Agarwal, S., Huang, H.D., Raikhel, N., and Jin, H. (2011). Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(*)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42, 356-366. https://doi.org/10.1016/j.molcel.2011.04.010
  67. Zhu, J., Gong, Z., Zhang, C., Song, C.P., Damsz, B., Inan, G., Koiwa, H., Zhu, J.K., Hasegawa, P.M., and Bressan, R.A. (2002). OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14, 3009-3028. https://doi.org/10.1105/tpc.006981

Cited by

  1. The Exocytosis Associated SNAP25-Type Protein, SlSNAP33, Increases Salt Stress Tolerance by Modulating Endocytosis in Tomato vol.10, pp.7, 2020, https://doi.org/10.3390/plants10071322
  2. Extracellular Vesicles from Korean Codium fragile and Sargassum fusiforme Negatively Regulate Melanin Synthesis vol.44, pp.10, 2021, https://doi.org/10.14348/molcells.2021.2167