DOI QR코드

DOI QR Code

Synapsin Isoforms and Synaptic Vesicle Trafficking

  • Song, Sang-Ho (Lee Kong Chian School of Medicine) ;
  • Augustine, George J. (Lee Kong Chian School of Medicine)
  • Received : 2015.08.31
  • Accepted : 2015.11.10
  • Published : 2015.11.30

Abstract

Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts.

Keywords

References

  1. Baldelli, P., Fassio, A., Valtorta, F., and Benfenati, F. (2007). Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J. Neurosci. 27, 13520-13531. https://doi.org/10.1523/JNEUROSCI.3151-07.2007
  2. Brautigam, C.A., Chelliah, Y., and Deisenhofer, J. (2004). Tetramerization and ATP binding by a protein comprising the A, B, and C domains of rat synapsin I. J. Biol. Chem., 279, 11948-11956. https://doi.org/10.1074/jbc.M312015200
  3. Cavalleri, G.L., Weale, M.E., Shianna, K.V., Singh, R., Lynch, J.M., Grinton, B., Szoeke, C., Murphy, K., Kinirons, P., O'Rourke, D., et al. (2007). Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study. Lancet Neurol. 6, 970-980. https://doi.org/10.1016/S1474-4422(07)70247-8
  4. Cheetham, J.J., Hilfiker, S., Benfenati, F., Weber, T., Greengard, P., and Czernik, A.J. (2001). Identification of synapsin I peptides that insert into lipid membranes. Biochem. J. 354, 57-66. https://doi.org/10.1042/bj3540057
  5. Chi, P., Greengard, P., and Ryan, T.A. (2003). Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69-78. https://doi.org/10.1016/S0896-6273(03)00151-X
  6. Dyck, B.A., Beyaert, M.G., Ferro, M.A., and Mishra, R.K. (2011). Medial prefrontal cortical synapsin II knock-down induces behavioral abnormalities in the rat: examining synapsin II in the pathophysiology of schizophrenia. Schizophr Res. 130, 250-259. https://doi.org/10.1016/j.schres.2011.05.017
  7. Esser, L., Wang, C.R., Hosaka, M., Smagula, C.S., C.Südhof, T.C., and Deisenhofer, J. (1998). Synapsin I is structurally similar to ATP-utilizing enzymes. EMBO J. 17, 977-984. https://doi.org/10.1093/emboj/17.4.977
  8. Evergren, E., Marcucci, M., Tomilin, N., Low, P., Slepnev, V., Andersson, F., Gad, H., Brodin, L., De Camilli, P., and Shupliakov, O. (2004). Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic 5, 514-528. https://doi.org/10.1111/j.1398-9219.2004.00198.x
  9. Feng, J., Chi, P., Blanpied, T.A, Xu, Y., Magarinos, A.M., Ferreira, A., Takahashi, R.H., Kao, H.-T., McEwen, B.S., Ryan, T.A., et al. (2002). Regulation of neurotransmitter release by synapsin III. J. Neurosci. 22, 4372-4380. https://doi.org/10.1523/JNEUROSCI.22-11-04372.2002
  10. Garcia, C.C., Blair, H.J., Seager, M., Coulthard, A., Tennant, S., Buddles, M., Curtis, A., and Goodship, J.A. (2004). Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J. Med. Genet. 41,183-186. https://doi.org/10.1136/jmg.2003.013680
  11. Giovedì, S., Darchen, F., Valtorta, F., Greengard, P., and Benfenati, F. (2004). Synapsin is a novel Rab3 effector protein on small synaptic vesicles: II. Functional effects of the Rab3A-synapsin I interaction. J. Biol. Chem. 279, 43769-43779. https://doi.org/10.1074/jbc.M404168200
  12. Gitler, D., Xu, Y., Kao, H.-T., Lin, D., Lim, S., Feng, J., Greengard, P., and Augustine, G.J. (2004a). Molecular determinants of synapsin targeting to presynaptic terminals. J. Neurosci. 24, 3711-3720. https://doi.org/10.1523/JNEUROSCI.5225-03.2004
  13. Gitler, D., Takagishi, Y., Feng, J., Ren, Y., Rodriguiz, R.M., Wetsel, W.C., Greengard, P., and Augustine, G.J. (2004b). Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J. Neurosci. 24, 11368-11380. https://doi.org/10.1523/JNEUROSCI.3795-04.2004
  14. Gitler, D., Cheng, Q., Greengard, P., and Augustine, G.J. (2008). Synapsin IIa controls the reserve pool of glutamatergic synaptic vesicles. J. Neurosci. 28, 10835-10843. https://doi.org/10.1523/JNEUROSCI.0924-08.2008
  15. Hilfiker, S., Schweizer, F.E., Kao, H.T., Czernik, A.J., Greengard, P., and Augustine, G.J. (1998). Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat. Neurosci. 1, 29-35. https://doi.org/10.1038/229
  16. Hilfiker, S., Pieribone, V.A., Czernik, A.J., Kao, H.T., Augustine, G.J., and Greengard, P. (1999). Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354, 269-279. https://doi.org/10.1098/rstb.1999.0378
  17. Hilfiker, S., Benfenati, F., Doussau, F., Nairn, A.C., Czernik, A.J., Augustine, G.J., and Greengard, P. (2005). Structural domains involved in the regulation of transmitter release by synapsins. J. Neurosci. 25, 2658-2669. https://doi.org/10.1523/JNEUROSCI.4278-04.2005
  18. Hosaka, M., and Südhof, T.C. (1998). Synapsin III, a Novel Synapsin with an Unusual Regulation by $Ca^{2+}$. J. Biol. Chem. 273, 13371-13374. https://doi.org/10.1074/jbc.273.22.13371
  19. Hosaka, M., and Südhof, T.C. (1999). Homo- and heterodimerization of synapsins. J. Biol. Chem. 274, 16747-16753. https://doi.org/10.1074/jbc.274.24.16747
  20. Jovanovic, J.N., Benfenati, F., Siow, Y.L., Sihra, T.S., Sanghera, J.S., Pelech, S.L., Greengard, P., and Czernik, A.J. (1996). Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc. Natl. Acad. Sci. USA 93, 3679-3683. https://doi.org/10.1073/pnas.93.8.3679
  21. Kao, H.T., Porton, B., Czernik, A. J., Feng, J., Yiu, G., Haring, M., Benfenati, F., and Greengard, P. (1998). A third member of the synapsin gene family. Proc. Natl. Acad. Sci. USA 95, 4667-4672. https://doi.org/10.1073/pnas.95.8.4667
  22. Kile, B.M., Guillot, T.S., Venton, B.J., Wetsel, W.C., Augustine, G.J., and Wightman, R.M. (2010). Synapsins differentially control dopamine and serotonin release. J. Neurosci. 30, 9762-9770. https://doi.org/10.1523/JNEUROSCI.2071-09.2010
  23. Li, L., Chin, L.S., Shupliakov, O., Brodin, L., Sihra, T.S., Hvalby, O., Jensen, V., Zheng, D.,McNamara, J.O., Greengard, P., et al., (1995). Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc. Natl. Acad. Sci. USA 92, 9235-9239. https://doi.org/10.1073/pnas.92.20.9235
  24. Llinas, R., Gruner, J.A., Sugimori, M., McGuinness, T.L., Greengard, P. (1991). Regulation by synapsin I and $Ca^{2+}$-calmodulindependent protein kinase II of the transmitter release in squid giant synapse. J. Physiol. 436, 257-282. https://doi.org/10.1113/jphysiol.1991.sp018549
  25. Medrihan, L., Cesca, F., Raimondi, A., Lignani, G., Baldelli, P., and Benfenati, F. (2013). Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nat. Commun. 4, 1512. https://doi.org/10.1038/ncomms2515
  26. Mirnics, K., Middleton, F.A., Marquez, A., Lewis, D.A., Levitt, P. (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53-67. https://doi.org/10.1016/S0896-6273(00)00085-4
  27. Monaldi, I., Vassalli, M., Bachi, A., Giovedì, S., Millo, E., Valtorta, F., Raiteri, R., Benfenati, F., and Fassio, A. (2010). The highly conserved synapsin domain E mediates synapsin dimerization and phospholipid vesicle clustering. Biochem. J. 426, 55-64. https://doi.org/10.1042/BJ20090762
  28. Pieribone, V.A., Shupliakov, O., Brodin, L., Hilfiker, S., Czernik, A.J., Greengard, P. (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493-497. https://doi.org/10.1038/375493a0
  29. Porton, B., Ferreira, A., DeLisi, L.E., and Kao, H.T. (2004). A rare polymorphism affects a mitogen-activated protein kinase site in synapsin III: Possible relationship to schizophrenia. Biol. Psychiatry 55, 118-125. https://doi.org/10.1016/j.biopsych.2003.07.002
  30. Porton, B., Wetsel, W.C., Kao, H.T. (2011). Synapsin III: role in neuronal plasticity and disease. Semin Cell Dev. Biol. 22, 416-424. https://doi.org/10.1016/j.semcdb.2011.07.007
  31. Rosahl, T.W., Spillane, D., Missler, M., Herz, J., Selig, D.K., Wolff, J.R., Hammer, R.E., Malenka, R.C., Sudhof, T.C. (1995). Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488-493. https://doi.org/10.1038/375488a0
  32. Song, SH., and Augustine, J.G. (2014). Synapsin isoforms regulating GABA release from hippocampal interneurons. Annual Meeting of Society for Neuroscience 783,12.
  33. Südhof, T.C., Czernik, A.J., Kao, H.T., Takei, K., Johnston, P.A., Horiuchi, A., Kanazir, S.D., Wagner, M.A., Perin, M.S., and De Camilli, P. (1989). Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245, 1474-1480. https://doi.org/10.1126/science.2506642
  34. Tan, M.L., Dyck, B.A., Gabriele, J., Daya, R.P., Thomas, N., Sookram, C., Basu, D., Ferro, M.A., Chong, V.Z., and Mishra, R.K. (2014). Synapsin II gene expression in the dorsolateral prefrontal cortex of brain specimens from patients with schizophrenia and bipolar disorder: effect of lifetime intake of antipsychotic drugs. Pharmacogenomics J.14, 63-69. https://doi.org/10.1038/tpj.2013.6
  35. Vawter, M.P., Thatcher, L., Usen, N., Hyde, T.M., Kleinman, J.E., and Freed, W.J. (2002). Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol. Psychiatry 7, 571-578. https://doi.org/10.1038/sj.mp.4001158
  36. Venton, B.J., Seipel, A.T., Phillips, P.E.M., Wetsel, W.C., Gitler, D., Greengard, P., Augustine, G.J., and Wightman, R.M. (2006). Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J. Neurosci. 26, 3206-3209. https://doi.org/10.1523/JNEUROSCI.4901-04.2006
  37. Villanueva, M., Thornley, K., Augustine, G.J., and Wightman, R.M. (2006). Synapsin II negatively regulates catecholamine release. Brain Cell Biol. 35, 125-136.

Cited by

  1. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures vol.58, pp.8, 2016, https://doi.org/10.1111/dgd.12323
  2. The mouse pulvinar nucleus: Organization of the tectorecipient zones vol.34, 2017, https://doi.org/10.1017/S0952523817000050
  3. Analysis of SUMO1-conjugation at synapses vol.6, 2017, https://doi.org/10.7554/eLife.26338
  4. Poly(N-(4-aminobutyl)-acrylamide) as mimetic polylysine for improving survival and differentiation of cerebellar granule neurons 2017, https://doi.org/10.1002/jbm.b.33932
  5. PI3K/Akt Pathway is Required for Spinal Central Sensitization in Neuropathic Pain 2018, https://doi.org/10.1007/s10571-017-0541-x
  6. The Role of Synapsins in Neurological Disorders vol.34, pp.2, 2018, https://doi.org/10.1007/s12264-017-0201-7
  7. Ryanodine Receptor-Mediated Calcium Release Has a Key Role in Hippocampal LTD Induction vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00403
  8. Molecular Mechanisms of Short-Term Plasticity: Role of Synapsin Phosphorylation in Augmentation and Potentiation of Spontaneous Glutamate Release vol.10, pp.1663-3563, 2018, https://doi.org/10.3389/fnsyn.2018.00033
  9. Memory enhancing effects of BPN14770, an allosteric inhibitor of phosphodiesterase-4D, in wild-type and humanized mice vol.43, pp.11, 2018, https://doi.org/10.1038/s41386-018-0178-6
  10. Calcineurin and Its Role in Synaptic Transmission vol.83, pp.6, 2018, https://doi.org/10.1134/S0006297918060056
  11. Subcutaneous Sustained-Release of Poly-Arginine Ameliorates Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease vol.07, pp.04, 2018, https://doi.org/10.4236/aad.2018.74011
  12. Decreased dopamine in striatum and difficult locomotor recovery from MPTP insult after exposure to radiofrequency electromagnetic fields vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37874-z
  13. Keratan sulfate, a complex glycosaminoglycan with unique functional capability vol.28, pp.4, 2015, https://doi.org/10.1093/glycob/cwy003
  14. Exercise improves recognition memory and synaptic plasticity in the prefrontal cortex for rats modelling vascular dementia vol.40, pp.1, 2018, https://doi.org/10.1080/01616412.2017.1398389
  15. Differential Expression of Synapsin I and II upon Treatment by Lithium and Valproic Acid in Various Brain Regions vol.21, pp.6, 2015, https://doi.org/10.1093/ijnp/pyy023
  16. Protective effects of primary neural stem cell treatment in ischemic stroke models vol.16, pp.3, 2018, https://doi.org/10.3892/etm.2018.6466
  17. Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing vol.8, pp.None, 2015, https://doi.org/10.7554/elife.41586
  18. The readily-releasable pool dynamically regulates multivesicular release vol.8, pp.None, 2015, https://doi.org/10.7554/elife.47434
  19. A proline-rich motif on VGLUT1 reduces synaptic vesicle super-pool and spontaneous release frequency vol.8, pp.None, 2015, https://doi.org/10.7554/elife.50401
  20. Regulation of Neurotransmitter Release by Amyloid Precursor Protein Through Synapsin Phosphorylation vol.44, pp.3, 2015, https://doi.org/10.1007/s11064-017-2418-2
  21. Synapsins regulate α-synuclein functions vol.116, pp.23, 2019, https://doi.org/10.1073/pnas.1903054116
  22. Postsynaptic Mechanisms Render Syn I/II/III Mice Highly Responsive to Psychostimulants vol.22, pp.7, 2015, https://doi.org/10.1093/ijnp/pyz019
  23. Regular Exercise Enhances Cognitive Function and Intracephalic GLUT Expression in Alzheimer’s Disease Model Mice vol.72, pp.1, 2019, https://doi.org/10.3233/jad-190328
  24. Synapsins are expressed at neuronal and non-neuronal locations in Octopus vulgaris vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-51899-y
  25. SNARE Complex-Associated Proteins and Alcohol vol.44, pp.1, 2015, https://doi.org/10.1111/acer.14238
  26. The good and bad of therapeutic strategies that directly target α‐synuclein vol.72, pp.4, 2015, https://doi.org/10.1002/iub.2194
  27. Going Deep into Synaptic Vesicle Machinery Genes and Migraine Susceptibility – A Case‐Control Association Study vol.60, pp.10, 2020, https://doi.org/10.1111/head.13957
  28. Synaptic Loss in Multiple Sclerosis: A Systematic Review of Human Post-mortem Studies vol.12, pp.None, 2015, https://doi.org/10.3389/fneur.2021.782599
  29. Synapsins and the Synaptic Vesicle Reserve Pool: Floats or Anchors? vol.10, pp.3, 2015, https://doi.org/10.3390/cells10030658
  30. Rho‐kinase inhibition by fasudil modulates pre‐synaptic vesicle dynamics vol.157, pp.4, 2015, https://doi.org/10.1111/jnc.15274
  31. Dynamic Foot Stimulations During Short-Term Hindlimb Unloading Prevent Dysregulation of the Neurotransmission in the Hippocampus of Rats vol.41, pp.7, 2021, https://doi.org/10.1007/s10571-020-00922-2