• 제목/요약/키워드: vertical vibrations

Search Result 150, Processing Time 0.025 seconds

Numerical performance assessment of Tuned Mass Dampers to mitigate traffic-induced vibrations of a steel box-girder bridge

  • Bayat, Elyas;Bayat, Meysam;Hafezzadeh, Raheb
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.125-134
    • /
    • 2021
  • In this paper, the effects of Tuned Mass dampers (TMDs) on the reduction of the vertical vibrations of a real horizontally curved steel box-girder bridge due to different traffic loads are numerically investigated. The performance of TMDs to reduce the bridge vibrations can be affected by the parameters such as dynamic characteristics of TMDs, the location of TMDs, the speed and weight of vehicles. In the first part of this study, the effects of mass ratio, damping percentage, frequency ratio, and location of TMDs on the performance of TMDs to decrease vertical vibrations of different sections of bridge deck are evaluated. In the second part, the performance of TMD is investigated for different speeds and weights of traffic loads. Results show that the mass ratio of TMDs is the more effective parameter in reducing imposed vertical vibration in comparison with the damping ratio. Furthermore, it is found that TMD is very sensitive to its tuned frequency, i.e., with a little deviation from a suitable frequency, the expected performance of TMD significantly decreased. TMDs have a positive and considerable performance at certain vehicle speeds and this performance declines when the weight of traffic loads is increased. Besides, the results reveal that the highest impact of TMD on the reduction of the vertical vibrations is when free vibrations occur for the bridge deck. In that case, maximum reductions of 24% and 59% are reported in the vertical acceleration of the bridge deck for the forced and free vibration amplitudes, respectively. The maximum reduction of 13% is also obtained for the maximum displacement of the bridge deck. The results are mainly related to the resonance condition.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train

  • Klasztorny, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.267-281
    • /
    • 2001
  • Transient and quasi-steady-state vertical vibrations of a multi-span beam steel bridge located on a single-track railway line are considered, induced by a superfast passenger train, moving at speed 120-360 km/h. Matrix dynamic equations of motion of a simplified model of the system are formulated partly in the implicit form. A recurrent-iterative algorithm for solving these equations is presented. Excessive vibrations of the system in the resonant zones are reduced effectively with passive dynamic absorbers, tuned to the first mode of a single bridge span. The dynamic analysis has been performed for a series of types of bridges with span lengths of 10 to 30 m, and with parameters closed to multi-span beam railway bridges erected in the second half of the $20^{th}$ century.

Full-scale experiments of cantilever traffic signal structures

  • Cruzado, Hector J.;Letchford, Chris
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.21-41
    • /
    • 2013
  • Wind-induced vibrations of mast arms of cantilever traffic signal structures can lead to fatigue failure. Two such structures were instrumented each with a sonic anemometer and a camera that records the motions of the tip of the arm. It was observed throughout this experiment that large amplitude vertical vibrations of mast arms with signals with backplates occur for the most part at low wind speed ranges, between 2 to 7 m/s, and as the wind speed increases the amplitude of the vertical vibrations decreases. The results of these experiments contradict the generally accepted belief that vortex shedding does not cause significant vibrations of mast arms that could lead to fatigue failure, which have been attributed to galloping in the past. Two damping devices were tested with mixed results.

Performance study on the whole vibration process of a museum induced by metro

  • Yang, Weiguo;Wang, Meng;Shi, Jianquan;Ge, Jiaqi;Zhang, Nan;Ma, Botao
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.413-434
    • /
    • 2015
  • The vibrations caused by metro operation propagate through surrounding soil, further induce secondary vibrations of the nearby underground structures and adjacent buildings. In order to investigate the effects of vibrations caused by metro on use performance of buildings, vibration experiment of Chengdu museum was carried out firstly. Then, the coupling tunnel-soil-structure finite element model was established with software ANSYS detailedly, providing a useful tool for investigating the vibration performances of structures. Furthermore, the dynamic responses and vibration predictions of museum building were obtained respectively by the whole process time-domain analysis and frequency-domain analysis, which were compared with the vibration reference values of museum. Quantitative analyses of the museum building performance were carried out, and the possible tendency and changing laws of vibration level with floors were proposed. Finally, the related vibration isolation measures were compared and discussed. The tests and analysis results show that: The vertical vibration responses almost increased with the increasing of building floors, while weak floors existed for the curve of horizontal vibration; The vertical vibrations were larger than the horizontal vibrations, indicating the vibration performances of building caused by metro were characterized with vertical vibrations; The frequencies of the museum corresponding to the peak vibration levels were around 6~17Hz; The damping effect of structure with 33m-span cantilever on vertical vibration was obvious, however, the damping effect of structure with foundation vibration isolators was not obvious.

Evaluation of Ride Vibration of Agricultural Tractors(III) -Measurement and Evaluation of Ride Vibrations- (농용(農用) 트랙터의 승차진동(乘車振動) 평가에 관한 연구(III) -승차진동의 측정과 평가-)

  • Chung, S.S.;Kim, K.U.;Moon, G.S.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.191-198
    • /
    • 1993
  • Vertical and horizontal ride vibrations of the selected agricultural tractors were measured and evaluated with respect to the ISO 2631 'guide for the evaluation of human exposure to whole body vibration'. Evaluation showed that at the normal transportation speeds of 1.4~20km/h on both the concret and ground surfaces tractor drivers were exposed to the vibrations whose magnitudes exceed the 8 hour fatigue decreased proficiency boundary in the frequency ranges of 2~16Hz in vertical and 1~2Hz in horizontal directions. Considering that tractor operation becomes as one of the specialized job for the future farming in Korea, measures must be made to protect the drivers against harmful ride vibrations of agricultural tractors.

  • PDF

Characteristics of Ride Vibrations in Rotary Tillage and Plowing Operations by Tractor (트랙터 로터리 작업과 쟁기 작업의 승차 진동 특성)

  • 박영준;박서범;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-216
    • /
    • 2004
  • This study was intended to investigate the characteristics of ride vibrations transmitted to tractor operator during rotary tillage and plowing operations. Seat accelerations of a 41 ps diesel tractor in rotary tillage and plowing were measured and evaluated as specified in the ISO 2631-1. Effects of working speed and tilling depth on ride vibration were investigated. The level of ride vibration was also evaluated in terms of health guidance caution zones. Some of the results of the study are as follows: 1. The level of ride vibration in plowing was about 4.3 times greater than in rotary tillage. 2. The effect of working speed in rotary tillage differs depending upon the tillage depth. The level of ride vibration was increased with the speed, but it decreased over a certain tillage depth. Fore and aft vibration was 2.2-2.7 times severer than horizontal and vertical vibrations. Dominant frequency band was 1-3.15 ㎐ in fore and aft, 1-3.15㎐ and 16-25㎐ in horizontal, and 16-25㎐ in vertical directions. 3. Plowing reduced the ride vibration by 42.8-50.2%. But its positive effect decreased as the plowing speed increased. In plowing operation, ride vibration was similar degrees in fore and aft, horizontal and vertical directions. The dominant frequency band in plowing operation was 1-2.5㎐ in fore and aft, 1-2.5㎐ in horizontal, and 1-8㎐ in vertical directions. 4. On a basis of daily work hours of 4, total level of ride vibrations in plowing operation is likely to be harmful to operator's health.

Velocity feedback for controlling vertical vibrations of pedestrian-bridge crossing. Practical guidelines

  • Wang, Xidong;Pereira, Emiliano;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2018
  • Active vibration control via inertial mass actuators has been shown as an effective tool to significantly reduce human-induced vertical vibrations, allowing structures to satisfy vibration serviceability limits. However, a lot of practical obstacles have to be solved before experimental implementations. This has motivated simple control techniques, such as direct velocity feedback control (DVFC), which is implemented in practice by integrating the signal of an accelerometer with a band-pass filter working as a lossy integrator. This work provides practical guidelines for the tuning of DVFC considering the damping performance, inertial mass actuator limitations, such as stroke and force saturation, as well as the stability margins of the closed-loop system. Experimental results on a full scale steel-concrete composite structure (behaves similar to a footbridge) with adjustable span are reported to illustrate the main conclusions of this work.

Compliance Analysis of Constrained Spatial Flexible Manipulators (구속받는 3차원 유연 매니퓰레이터의 컴플라이언스 해석)

  • Kim, Jin-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.91-96
    • /
    • 2006
  • The aim of this paper is to clarify the structural compliance of the constrained spatial flexible manipulator and to develop the force control by using the compliance of the links. Using the dependency of elastic deflections of links on contact force, vibrations for constrained vertical motion have been suppressed successfully by controlling the position of end-effector. However, for constrained horizontal motion, the vibrations cannot be suppressed by only controlling position of end-effector. We present the experimental results for constrained vertical motion, and constrained horizontal motion. Finally, a comparison between these results is presented to show the validity of link compliance.

Development of Active Seat Suspension with 2 DOF for Agricultural Tractors(I) - Development of Control System for Active Seat Suspension - (농용트랙터를 위한 2자유도를 갖는 능동형 좌석 현가장치 개발(I) - 능동형 좌석 현가장치 제어시스템의 개발 -)

  • Yu, Ji-Hoon;Lee, Kyu-Cheol;Kim, Ki-Young;Park, Hyung-Bae;Ryu, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.315-324
    • /
    • 2009
  • Various types of vibration are transmitted to operators of agricultural tractors while working in the field. Most harmful vibration to human body is ride vibrations with low frequency ranging from 1 to 10 Hz, caused by rough terrain. These ride vibration has vertical and rotational components. This study was conducted to develop an active seat suspension system with two degrees of freedoms, enabling effectively reduce vibrations in vertical and pitch motions. Therefore, a mechanism for the active seat suspension was developed, and an electro-hydraulic servo system and a controller to drive the active seat suspension system were also developed in this study. A simulation model was developed to evaluate how the active seat suspension system effectively reduce the vibrations transmitted to the base of seat. Active seat suspension was optimized to enhance the performance using the developed simulation model. The performance of the seat suspension system was evaluated according to the test codes described in EEC78/764 in order to investigate the feasibility of application to agricultural tractors. The result showed that the developed active seat suspension system could reduce the magnitude of vertical vibration up to 80% for the input vibrations according to the test codes described in EEC78/764. The system could reduce the rotational displacement of ${\pm}\;2.5$ degrees up to 50% for the pitch vibration on the average in the frequency range of 1 to 2 Hz.