Acknowledgement
The work described in this paper was financially supported by the National Key R&D Program of China (No. 2022YFB3706703), and the National Natural Science Foundation of China under Grant No. 52078134 and 52378138, which are gratefully acknowledged.
References
- Cao, H.Y., Qian, X.D., Zhou, Y.L., Chen, Z.J. and Zhu, H.P. (2018), "Feasible range for midtower lateral stiffness in threetower suspension bridges", J. Bridge. Eng., 23(3), 06017009. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001196.
- Castellani, A. and Felloti, P. (1986), "Lateral vibration of suspension bridges", J. Struct. Eng., 112(9), 2169-2173. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2169).
- Chai, S.B., Xiao, R.C. and Li, X.N. (2014), "Longitudinal restraint of a double-cable suspension bridge", J. Bridge Eng., 19(4), 06013002. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000528.
- Chai, S.B., Xiao, R.C. and Sun, B. (2011), "Mechanical properties of double-cable suspension bridge system (I)", J. South China Univ. Techno. (Nat. Sci. Ed.), 39, 159-164. https://doi.org/10.3969/j.issn.1000-565X.2011.12.027.
- Chai, S.B., Xiao, R.C. and Sun, B. (2012), "Mechanical properties of the double main cables suspension Bridge (II)", J. South China Univ. Techno. (Nat. Sci. Ed.), 40, 23-28. https://doi.org/10.3969/j.issn.1000-565X.2012.02.005.
- Choi, D.H., Gwon, S.G. and Na, H.S. (2014), "Simplified analysis for preliminary design of towers in suspension bridges", J. Bridge Eng., 19(3), 04013007. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000551.
- Ding, N.H., Lin, L.X. and Liao, W.H. (2011), "Vibration of double cable suspension bridge under vehicle load", International Conference on Intelligent Structure and Vibration Control (ISVC 2011), Chongqing, China.
- Ding, N.H., Lin, L.X., Qian, Y.J. and Huang, L. (2011), "Study on seismic response characteristics of double cables suspension bridge", International Conference on Vibration, Structural Engineering, and Measurement (ICVSEM 2011), Shanghai, China.
- Ding, N.H., Qian, Y., Lin, L. and Wu, Y. (2010), "Vibration character of a double cable suspension bridge under a singlevehicle load", J. Vib. Shock, 29, 216-220.
- Ghannadi, P. and Kourehli, S.S. (2019a), "Data-driven method of damage detection using sparse sensors installation by SEREPa", J. Civil Struct. Hlth. Monit., 9, 459-475. https://doi.org/10.1007/s13349-019-00345-8.
- Ghannadi, P. and Kourehli, S.S. (2019b), "Model updating and damage detection in multi-story shear frames using Salp Swarm Algorithm", Earthq. Struct., 17(1), 63-73. https://doi.org/10.12989/eas.2019.17.1.063.
- Ghannadi, P. and Kourehli, S.S. (2019c), "Structural damage detection based on MAC flexibility and frequency using mothflame algorithm", Struct. Eng. Mech., 70(6), 649-659. https://doi.org/10.12989/sem.2019.70.6.649.
- Ghannadi, P. and Kourehli, S.S. (2020b), "Multiverse optimizer for structural damage detection: Numerical study and experimental validation", Struct. Des. Tall Spec. Build., 29(13), e1777. https://doi.org/10.1002/tal.1777.
- Ghannadi, P. and Kourehli, S.S. (2021), "An effective method for damage assessment based on limited measured locations in skeletal structures", Adv. Struct. Eng., 24(1), 183-195. https://doi.org/10.1177/1369433220947193.
- Ghannadi, P. and Kourehli, S.S. (2022), "Efficiency of the slime mold algorithm for damage detection of large-scale structures", Struct. Des. Tall Spec. Build., 31(14), e1967. https://doi.org/10.1002/tal.1967.
- Ghannadi, P., Kourehli, S.S., Noori, M. and Altabey, W.A. (2020a), "Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes", Adv. Struct. Eng., 23(13), 2850-2865. https://doi.org/10.1177/1369433220921000.
- Gimsing, N.J. (2005), "The modern cable-stayed bridge-50 years of development from 1955 to 2005", International Symposium on Innovation and Sustainability of Structures in Civil Engineering-Including Seismic Engineering (ISISS), Nanjing, China.
- Gwon, S.G., Hoon, Y. and Choi, D.H. (2014), "Effects of flexural rigidity of center tower in four-span suspension bridges", J. Korean Soc. Civil Eng., 34(1), 49-60. https://doi.org/10.12652/Ksce.2014.34.1.0049.
- Hayashikawa, T. (1997), "Torsional vibration analysis of suspension bridges with gravitational stiffness", J. Sound Vib., 204(1), 117-129. https://doi.org/10.1006/jsvi.1997.0948.
- Hayashikawa, T. and Watanabe, N. (1984), "Vertical vibration in Timoshenko beam suspension bridges", J. Eng. Mech., 110(3), 341-356. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(341).
- Jin, H., Guo, X.Y., Wang, L.B. and Feng, D.M. (2015), "Modal analysis of the triple-tower twin-span suspension bridge in deck unit erection stage", J. Vibroeng., 17(4), 2001-2012.
- Michaltsos, G.T. and Raftoyiannis, I.G. (2012), Bridges' Dynamics, Bentham eBooks.
- Pena, A., Valenzuela, M., Marquez, M. and Pinto, H. (2017), "Minimum geotechnical requirements for traditional and singular bridges foundations design: Chacao Suspension Bridge", Rev. Constr., 16(3), 498-505. https://doi.org/10.7764/RDLC.16.3.498.
- Sun, Y., Zhu, H.P. and Xu, D. (2016), "A specific rod model based efficient analysis and design of hanger installation for selfanchored suspension bridges with 3D curved cables", Eng.
- Struct., 110, 184-208. https://doi.org/10.1016/j.engstruct.2015.11.040. Thai, H.T. and Choi, D.H. (2013), "Advanced analysis of multispan suspension bridges", J. Constr. Steel. Res., 90, 29-41. https://doi.org/10.1016/j.jcsr.2013.07.015.
- Wang, L.B., Guo, X.Y., Noori, M. and Hua, J. (2014), "Modal analysis of cable-tower system of twin-span suspension bridge", J. Vibroeng., 16(4), 1977-1991.
- Wang, X.L., Chai, S.B. and Xu, Y. (2016), "Deformation characteristics of double-cable multispan suspension bridges", J. Bridge Eng., 21(4), 06015007. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000858.
- Wang, X.M., Wang, H., Sun, Y., Mao, X. and Tang, S. (2020), "Process-independent construction stage analysis of selfanchored suspension bridges", Autom. Constr., 117, 103227. https://doi.org/10.1016/j.autcon.2020.103227.
- Wang, X.M., Wang, H., Zhang, J., Sun, Y., Bai, Y., Zhang, Y. and Wang, H. (2021), "Form-finding method for the target configuration under dead load of a new type of spatial selfanchored hybrid cable-stayed suspension bridges", Eng. Struct., 227, 111407. https://doi.org/10.1016/j.engstruct.2020.111407.
- Xun, J., He, S. and Song, T. (2016), "Estimation frequency formulas for vertical vibration for three-span continuous system suspension bridge considering tower stiffness influence", J. Beijing Univ. Technol., 42, 1697-1702. https://doi.org/10.11936/bjutxb2016050052.
- Yang, G., Li, Z., Hao, X., Wang, X. and Song, T. (2016), "Practical formulas for calculating fundamental frequency of symmetric vertical vibration of asymmetry suspension bridges", Eng. J. Wuhan Univ. Eng., 49(2), 247-253. (in Chinese)
- Yoshida, O., Okuda, M. and Moriya, T. (2004), "Structural characteristics and applicability of four-span suspension bridge", J. Bridge Eng., 9(5), 453-463. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:5(453).
- Zhang, W.M., Ge, Y.J. and Levitan, M.L. (2013), "A method for nonlinear aerostatic stability analysis of long-span suspension bridges under yaw wind", Wind Struct., 17(5), 553-564. https://doi.org/10.12989/was.2013.17.5.553.
- Zhang, W.M., Wang, Z.W., Zhang, H.Q., Lu, X.F. and Liu, Z. (2020), "Analytical study on free vertical and torsional vibrations of two-and three-pylon suspension bridges via D'alembert's principle", Struct. Eng. Mech., 76(3), 293-310. https://doi.org/10.12989/sem.2020.76.3.293.
- Zhang, W.M., Yang, C.Y. and Chang, J.Q. (2021), "Cable shape and construction parameters of triple-tower double-cable suspension bridge with two asymmetrical main spans", J. Bridge Eng., 26(2), 04020127. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001674.