• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.028 seconds

GPS Surveying by A Point Positioning (일점측위에 의한 GPS측정)

  • Lee, Y.H.;Mun, D.Y.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.119-130
    • /
    • 1998
  • As a satellite positioning system, GPS is designed to provide the information on three dimensional position, velocity, and time all over the world. The purpose of this paper is to obtain what day has the best accuracy and what time has the best accuracy of measuring of forteen-twenty mimutes for effective using of MAGELLAN G.P.S NAV DLX-10 system. The result of measurement maximum deviation value from November, 1997 to March, 1998 that latitude deviation is 3' .75 and longitude deviation is 2' .1 And the result of measurement maximum deviation value during fourteen minutes of April 29, 1998 that latitude deviation is 3' .75 and longitude deviation is 1' .9. The result of measurement maximum deviation value during twenty minutes of May 6, 1998 that latitude deviation is 4' .75 and longitude deviation is 2' .1 and that is provid 3' .25, 4' .1 to May 13, 1998. So, we expect efficient use of horizontal position for navigation.

  • PDF

A Design of Ion-Implanted GaAs MESFET's Having High Transconductance Characteristics (이온 주입공정에 의한 고 GaAs MESFET의 설계)

  • Lee, Chang Seok;Shim, Gyu-Hwan;Park, Hyung Moo;Park, Sin-Chong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.789-794
    • /
    • 1986
  • The current-voltage characteristics of ion-implanted GaAs MESFET's have been simulated by using the velocity saturation model. Using this model, a MESFET with threshold voltage of -0.5V and transconductance of 460 mS/mm is designed. To implement high transconductance MESFET's, low energy ion-implantation (20 keV) and RTP(Rapid Thermal Process) activation ($575^{\circ}C$, 5sec) processes are required.

  • PDF

A Study on Estimation of a Mobile Robot's Position Using Neural Network (신경회로망을 이용한 이동로보트의위치 추정에 관한 연구)

  • Kim, Jae-H;Lee, Jae-C;Cho, Hyung-S
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.141-151
    • /
    • 1993
  • For navigation of a mobile robot, it is one of the essential tasks to find out its current position. Dead reckonining is the most frequently used method to estimate its position. Hpwever conventional dead reckoner is prone to give us false information on the robot position especially when the wheels are slipping. This paper proposes an improved dead reckoning scheme using neural networks. The network detects the instance of wheel slopping and estimates the linear velocity of the wheel; thus it calculates current position and heading angle of a mobile robot. The structure and variables of the nerual network are chosen in consideration of slip motion characteristics. A series of experiments are performed to train the networks and to investigate the performance of the improved dead reckoning system.

  • PDF

Development of a diagnostic coronagraph on the ISS: BITSE overview and progress report

  • Kim, Yeon-Han;Choi, Seonghwan;Bong, Su-Chan;Cho, Kyungsuk;Park, Young-Deuk;Newmark, Jeffrey;Gopalswamy, Nat.;Yashiro, Seiji;Reginald, Nelson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.56.4-56.4
    • /
    • 2019
  • The Korea Astronomy and Space Science Institute (KASI) has been collaborating with the NASA's Goddard Space Flight Center, to install a coronagraph on the International Space Station (ISS). The coronagraph will utilize spectral information to simultaneously measure electron density, temperature, and velocity. As a first step, we developed a new coronagraph and launched it on a stratospheric balloon in 2019 (BITSE) from Fort Sumner, New Mexico in USA. As the next step, the coronagraph will be be further developed, installed and operate on the ISS (CODEX) in 2022 to address a number of important questions (e.g., source and acceleration of solar wind, and coronal heating) in the physics of the solar corona and the heliosphere. Recently, BITSE has been launched at Fort Sumner, New Mexico. In this presentation, we will introduce the BITSE mission and discuss recent progress.

  • PDF

Understanding high-mass star formation through KaVA observations of water and methanol masers

  • Kim, Kee-Tae;Hirota, Tomoya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.51.4-51.4
    • /
    • 2019
  • We started a systematic observational study of the 22 GHz water and 44 GHz class I methanol masers in 87 high-mass young stellar objects (HM-YSOs) as a KaVA large program (LP). The primary goal is to understand dynamical evolution of HM-YSOs and their circumstellar structures by measuring spatial distributions and 3-dimensional velocity fields of multiple maser species. In the first-year observations (2016-2017), we made snap-shot imaging surveys of 25 water and 19 methanol maser sources. In the second-year observations (2018-2019), we have carried out monitoring observations of 19 water and 3 methanol maser sources that were selected on the basis of the first-year survey results. By combining follow-up observations with VERA (distances), JVN/EAVN (6.7 GHz methanol masers), and ALMA cycles 3 and 6 (thermal lines/continuum), we will provide novel information on physical properties (density, temperature, size, mass), 3D dynamical structures of disk/jet/outflow/infalling envelope, and relationship between evolutionary of HM-YSOs. In this presentation, we will report the current status and future plans of our KaVA large program.

  • PDF

STaRS Gen 2: Sejong Radiative Transfer through Raman and Rayleigh Scattering in Dusty Medium

  • Chang, Seok-Jun;Lee, Hee-Won;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.81.2-81.2
    • /
    • 2021
  • Emission features formed through Raman scattering with atomic hydrogen provide unique and crucial information to probe the distribution and kinematics of a thick neutral region illuminated by a strong far-ultraviolet radiation source. We introduce a new 3-dimensional Monte-Carlo code to describe the radiative transfer of line photons subject to Raman and Rayleigh scattering with atomic hydrogen. In our Sejong Radiative Transfer through Raman and Rayleigh Scattering (STaRS) code, the position, direction, wavelength, and polarization of each photon is traced until escape. The thick neutral scattering region is divided into multiple cells. Each cell is characterized by its velocity and density, which ensures flexibility of the code in analyzing Raman-scattered features formed in a neutral region with complicated kinematics and density distribution. We are continuously developing STaRS to adopt the absorption and scattering effect by dust. This presentation introduces STaRS and its current state and study.

  • PDF

Analysis of Phase Velocity Matching in Coupled Microstrip Lines with Dielectric Overlay

  • Lee, Yong K.;Seung Y. Rhee;Kim, Nam;Park, Han K.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.96-100
    • /
    • 1996
  • This paper describes a concrete method for computing characteristic impedances and effective dielectric constants of the microstrip coupled lines without and with a dielectric overlay. The frequency-independent spectral domain method is used for the analysis of these lines. This method is a powerful, accurate, and numerically efficient approach for planar transmission line structure. For designing the optimal directional coupler, the velocities of even and odd mode must be equal but velocities of these two modes are different in the conventional coupled line which is inhomogeneous. The results show that these two velocities can be almost same according to variations of structural and material parameters in terms of the overlay(superstrate).

  • PDF

SPECTRAL LINE ANALYSIS/MODELING (SLAM) I: PVANALYSIS

  • Yusuke, Aso;Jinshi Sai (Insa Choi)
    • Publications of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2024
  • Line observations of young stellar objects (YSOs) at (sub)millimeter wavelengths provide essential information of gas kinematics in star and planet forming environments. For Class 0 and I YSOs, identification of Keplerian rotation is of particular interest, because it reveals presence of rotationally-supported disks that are still being embedded in infalling envelopes and enables us to dynamically measure the protostellar mass. We have developed a python library SLAM (Spectral Line Analysis/Modeling) with a primary focus on analyses of emission line data at (sub)millimeter wavelengths. Here, we present an overview of the pvanalysis tool from SLAM, which is designed to identify Keplerian rotation of a disk and measure the dynamical mass of a central object using a position-velocity (PV) diagram of emission line data. The advantage of this tool is that it analyzes observational features of given data and thus requires few computational time and parameter assumptions, in contrast to detailed radiative transfer modelings. In this article, we introduce the basic concept and usage of this tool, present an application to observational data, and discuss remaining caveats.

A Simulation to Find Rotation Efficiency according to the Draft Changes of Waterwheel in Open Rectangular Channel (사각형 개수로에서의 수차 흘수 변화에 따른 회전 효율 파악을 위한 시뮬레이션)

  • Lee, Kyong-Ho;Park, Hee-Wan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.113-121
    • /
    • 2013
  • In this paper, simulations were carried out to determine the efficiency of the rotation efficiency according to the draft of waterwheel in open rectangular channel. In the small hydroelectric generators to get the highest efficiency of waterwheel is very important. But the presence of various elements(free water surface flow, non-uniform velocity distribution because of the waterways wall friction etc) makes it difficult to create a mathematical formula. In this paper, we made a scale model and perform a physical simulation where the draft, gradient and flux is variable. Scale modelling with 10-step draft, 3-step gradients and 2-step flux, as well were constructed then computerized automatic experimental system were configured to acquire the rotational efficiency vs. draft of itself. Rotational efficiency is analyzed as for the draft of waterwheel using the acquired data by varying the gradient and flux of canal. Reviewing the analyzed data, it is confirmed that phenomena of efficiency shown at previous and present experiment is similar and revealed that computerized system shows more sophisticated numerical figures.

Underwater Target Information Estimation using Proximity Sensor (근접센서를 이용한 수중 표적 정보 추정기법)

  • Kim, JungHoon;Yoon, KyungSik;Seo, IkSu;Lee, KyunKyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.174-180
    • /
    • 2015
  • In this paper, we propose the passive sonar signal processing technique for estimating target information using proximity sensor. This algorithm is performed by single sensor which is constituted underwater sensor network and has a hierarchical structure. The estimated parameter is the velocity, the depth, the distance and bearing at CPA situations and we can improve the accuracy of signal processing techniques through having a hierarchical structure. We verify the performance of the proposed method by computer simulation and then we check the result that 20% error can be occurred in maximum detectable range. We also confirm that proposed method has the reliability in the actual sea environment through the sea experiment.