• Title/Summary/Keyword: velocity analysis

Search Result 7,043, Processing Time 0.031 seconds

Advanced Evacuation Analysis for Passenger Ship Using Penalty Walking Velocity Algorithm for Obstacle Avoid (장애물 회피에 페널티 보행 속도 알고리즘을 적용한 여객선 승객 탈출 시뮬레이션)

  • Park, Kwang-Phil;Ha, Sol;Cho, Yoon-Ok;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper, advanced evacuation analysis simulation on a passenger ship is performed. Velocity based model has been implemented and used to calculate the movement of the individual passengers under the evacuation situation. The age and gender of each passenger are considered as the factors of walking speed. Flocking algorithm is applied for the passenger's group behavior. Penalty walking velocity is introduced to avoid collision between the passengers and obstacles, and to prevent the position overlap among passengers. Application of flocking algorithm and penalty walking velocity to evacuation simulation is verified through implementation of the 11 test problems in IMO (International Maritime Organization) MSC (Maritime Safety Committee) Circulation 1238.

Analysis of Typhoon for Design of Sea-Dike (방조제의 설계를 위한 태풍의 분석)

  • 한상욱;이중기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4089-4095
    • /
    • 1976
  • The safety of shore structure including the sea dipe is largely affected by typhoon. Accordingly it is desirable to analize the typhoon and determine the wind direction and velocity for use in planning and design of the structure. This method was adopted for the design of the Yong San Gang Estuary Dam. A comparative study of the results of typhoon analysis with the meteorological data obtained through actual observation is summarized as follows; (1) 62% of the typhoons occur during May to June in a year, and 62% of the typhoons which have an influence on the Korean peninsula, especially the proposed estuary dam fsite, proceed eastward through the zone in lat. 36$^{\circ}$-37$^{\circ}$N. Such typhoons occur two to three times a year on the average. (2) Data on typhoon "SARL" were used as a model case in designing the estuary dam, where it was proved that a southwesterly wind had a maximum velocity of 30m/sec in case r=150km, ${\alpha}$=120$^{\circ}$. Within the range of 22$^{\circ}$30'on the right and left side of the fetch line of the estuary dam, the wind direction varied SSW\longrightarrowSW\longrightarrowWSW, and the wind velocity varied 29m/sec\longrightarrow30m/sec\longrightarrow125m/sec. Such phenomemum lasted for five hours. (3) An analysis of data obtained during 44 years at Mok Po Meteorological Station shows that a wind with a velocity of some 25m/sec occurred twelve times in the S-direction and two times in the SW-direction, while that with a velocity of 30m/sec occurred three times in the S-direction, three times in the SSW-direction and one time in the SW-direction. The wind which had an influence on the estuary dam had a direction of SSW\longrightarrowSW\longrightarrowWSW and a velocity of min. 30m/sec. Actually, a wind with a max. velocity of 31.3m/sec occurred in the SSW-direction on March 15 and 16, 1956 where the mean velocity during two hours was 28m/sec and that during four hours was 24.6m/sec. (4) The data obtained through actual observation show that when the velocity is low, the wind with a fixed direction lasts long, and when the velocity is high, it is short-lived. It is difficult to determine the velocity of a wind which blows in a fixed direction for consecutive two or four hours. Therefore, the values obtained through typhoon analysis are larger that those obtained through actual observation, and hence, it is resonable to use the analyzed valuse for design of the estuary dam and shore structures. (5) The greatest effect was had on the estuary dam when typhoon was proceeding at a velocity of 29.71m/sec in the direction of ${\alpha}$=120$^{\circ}$(SW) at a point of R=150km from the center of the typhoon.

  • PDF

A Numerical Study of Flame Spread of A Surface Forest Fire (지표화 산불의 화염전파 수치해석)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Kim, Kwang-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.80-83
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-dimensional surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-dimensional surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals has a error of less than 20%.

  • PDF

The Kinematic Analysis According to a Dancesport Heel-Shoes Type on Rumba Cucarachas Movement Change (댄스스포츠 구두 굽 유형에 따른 룸바 쿠카라차 동작 변화에 대한 운동학적 분석)

  • Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.125-135
    • /
    • 2006
  • This study was to analyze the effect of dancesport heel-shoes heights on Rumba Cucarachas Movement in terms of analysis, and to provide the essential information to decide the proper heel-shoes heights for individual. six female subjects participated in this study. Dependent variables were set and divided into the amount of movement regarding the velocity and angle of the right elbow, pelvis, ankle, and knee. The following conclusion was drawn blow. 1) Angle: We all appeared in 5, 7, 9cm heel height so that we were similar in a knee and elbow angle and no significantly. The plantar flexion appeared greatly as an ankle angle's shoe high and significantly. 2) Velocity: An elbow velocity all appeared in a three shoes so that it was similar. We speed fast speed some in a 7cm heel height. A knee velocity expressed fast speed some in a 5cm heel height. The pelvis velocity in a that it was similar. Generaly, The aspect to be a dancesport competition o'clock and aesthetic is the height. and the muscular strength train after we need the thing to choose suitable to the individual shoe height. It is logical that the decision of heel-shoes heights should be made by anthropometric and sport dynamic analysis in order to maximize the dynamic and aesthetic aspect of dance sport.

ESTIMATING THE GEOSTROPHIC VELOCITY COMPONENT IN THE SEA SURFACE VELOCITY OBSERVED BY THE HF RADAR IN THE UPSTREAM OF THE KUROSHIO

  • Tokeshi, Ryoko;Ichikawa, Kaoru;Fujii, Satoshi;Sato, Kenji;Kojima, Shoichiro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.672-675
    • /
    • 2006
  • The geostrophic current component is estimated from the sea surface velocity observed by the long-range High-Frequency Ocean Radar (HF radar) system in the upstream of the Kuroshio, by comparing with geostrophic velocity determined from along-track T/P and Jason-1 altimetry data. However, the sea surface velocity of the HF radar (HF velocity) contains not only the geostrophic current but also the ageostrophic current such as tidal current and wind-driven Ekman current. Tidal current component is first extracted by the harmonic analysis of the time series of the HF velocity. Then, the Ekman current is further estimated from daily wind data of IFREMER by applying the least-square method to the residual difference between the HF velocity and the altimetry geostrophic velocity. As a result, the Ekman current in the HF velocity is estimated as 1.32 % of the wind speed and as rotated 45$^{\circ}$ clockwise to the wind direction. These parameters are found almost common in the Kuroshio area and in the Open Ocean. After these corrections, the geostrophic velocity component in the HF velocity agrees well with the altimetry geostrophic velocity.

  • PDF

Study on Impact Damage Behavior of Turbo Fan Engine Nacelle Sandwich Composite Structure (터보팬 엔진 나셀용 샌드위치 복합재 구조물의 손상 거동 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Seung-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.75-78
    • /
    • 2007
  • In this study, low velocity impact analysis on Turbo Fan Engine composite sandwich structure was performed. Sandwich structure configuration is made of carbon/epoxy face sheets and foam cores. For validating study, the results of an experimental and of a Finite Element Method analysis were compared previously. From the Finite Element Method analysis results of sandwich panel, it was confirmed that the result of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using Finite Element Method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity.

  • PDF

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Fuel Injection Velocity for a Liftoff Flame (부상화염에서 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.466-475
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of fuel injection velocity at the fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity, but its effect on the flame propagation velocity is not much greater under 4%. The increase of fuel injection velocity affects directly and linearly on the flame surface area in the fuel rich region and so enhances volume integral of reaction rate to accommodate the increment of fuel.

A Study on Field Seismic Data Processing using Migration Velocity Analysis (MVA) for Depth-domain Velocity Model Building (심도영역 속도모델 구축을 위한 구조보정 속도분석(MVA) 기술의 탄성파 현장자료 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • Migration velocity analysis (MVA) for creating optimum depth-domain velocities in seismic imaging was applied to marine long-offset multi-channel data, and the effectiveness of the MVA approach was demonstrated by the combinations of conventional data processing procedures. The time-domain images generated by conventional time-processing scheme has been considered to be sufficient so far for the seismic stratigraphic interpretation. However, when the purpose of the seismic imaging moves to the hydrocarbon exploration, especially in the geologic modeling of the oil and gas play or lead area, drilling prognosis, in-place hydrocarbon volume estimation, the seismic images should be converted into depth domain or depth processing should be applied in the processing phase. CMP-based velocity analysis, which is mainly based on several approximations in the data domain, inherently contains errors and thus has high uncertainties. On the other hand, the MVA provides efficient and somewhat real-scale (in depth) images even if there are no logging data available. In this study, marine long-offset multi-channel seismic data were optimally processed in time domain to establish the most qualified dataset for the usage of the iterative MVA. Then, the depth-domain velocity profile was updated several times and the final velocity-in-depth was used for generating depth images (CRP gather and stack) and compared with the images obtained from the velocity-in-time. From the results, we were able to confirm the depth-domain results are more reasonable than the time-domain results. The spurious local minima, which can be occurred during the implementation of full waveform inversion, can be reduced when the result of MVA is used as an initial velocity model.

Characteristic of Wind Flow around Building Structures for Wind Resource Assessment (풍자원 평가를 위한 건축물 주변의 유동특성)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Shin, Seung-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.50-58
    • /
    • 2011
  • To utilize wind resources effectively around buildings in urban area, the magnitudes of wind velocity and turbulence intensity are important, which means the need of the information about the relationship between the magnitude of wind velocity and that of fluctuating wind velocity. In the paper, wind-tunnel experiments were performed to provide the information about Characteristic of Wind flow around buildings with the spanwise distance and the side ratio of buildings as variables. For a single building with the side ratios of one and two, the average velocity ratio was 1.4 and the velocity standard deviation ratio ranged from 1.4 to 2.6 at the height of 0.02m at the corner of the windward side, in which flow separation occurred. For twin buildings with the side ratios of one and two, the velocity ratio ranged from 2 to 2.5 as the spanwise distance varied at the height of 0.02m, and the velocity standard deviation ratio varied near 1.25. For twin buildings with the side ratios of one and two, the maximum velocity ratio was 1.75 at the height of 0.6m, and the maximum velocity standard deviation ratio was 2.1. It was also found from the results of CFD analysis and wind-tunnel experiments that for twin buildings with the side ratios of one and two, the difference between the velocity ratio of CFD analysis and that of wind-tunnel experiments at streamwise distances was near 0.75.