본 논문은 한국의 차량 번호판 인식에 효과적인 방법을 제안한다. 획득한 자동차 이미지로부터 Haar-Like Feature를 이용해 대략적인 번호판 후보 영역을 찾아낸 후, 랭크 필터를 사용하여 전처리를 하고 캐니 에지 추출 (Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 알고리즘을 사용하여 학습된 신경망을 이용하여 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.
차량 번호판 인식 카메라는 차량 번호판 내 문자와 숫자의 인식을 위하여 대상 차량의 이미지 취득을 목적으로 하는 전용 카메라를 말하며 대부분 단독 사용보다는 서버와 영상 분석 모듈과 결합된 시스템의 일부로 적용된다. 그러나 차량 번호판 인식을 위한 시스템 구축을 위해서는 취득 영상 관리 및 분석 지원을 위한 서버와 문자, 숫자의 추출 및 인식을 위한 영상 분석 모듈을 함께 구성하여야 하므로 구축을 위한 설비가 필요하고 초기 비용이 많이 든다는 문제점이 있다. 이에 본 연구에서는 카메라의 기능을 차량 번호판 인식에만 한정하지 않고 방범 기능을 함께 수행할 수 있도록 확장하고 카메라 단독으로도 두가지 기능 수행이 가능한 Edge Base의 임베디드형 융합 카메라를 개발한다. 임베디드형 융합 카메라는 선명한 영상 취득 및 빠른 데이터 전송을 위해 고해상도 4K IP 카메라를 탑재하고 오픈소스 신경망 알고리즘 기반의 다중 객체 인식을 위한 딥러닝 SW인 YOLO를 적용하여 차량 번호판 영역을 추출한 후 차량 번호판 내의 문자와 숫자를 검출하고 검출 정확도와 인식 정확도를 검증하여 CCTV 방범 기능과 차량 번호 인식 기능이 가능한지를 확인 하였다.
본 논문에서는 번호판 인식 시스템과 스테레오 카메라를 이용한 차량의 속도 측정 시스템을 제안하고 구현한다. 차량 번호판 인식의 결과로 나오는 특징점을 활용하여 스테레오 영상의 양안 차 정보를 추출하고 이를 이용하여 해당 특징점까지의 거리를 계산한다. 본 논문에서는 인접 스테레오 영상에서 계산된 특징점까지의 거리와 각 거리에 해당하는 시간 정보를 이용하여 차량의 속도를 측정한다. 제안한 속도 측정 시스템의 정확도를 확인하기 위해 테이프 스위치로 된 기준 측정 장비를 사용하여 속도를 비교하였다. 주간과 야간 2회에 걸쳐 실시한 시험 결과에서도 알 수 있듯이 구현된 스테레오 기반 속도 측정 시스템은 경찰청 기준 오차 범위를 만족하는 속도 측정 결과를 보였다.
본 논문에서는 RGB 컬러 정보와 오류 역전파 신경망 알고리즘을 이용한 신 차량 번호판 인식 방법을 제안한다. 먼저, 차량 영상에서 평균 Blue값을 이용하여 차량 영상을 보정하고 픽셀값의 차를 이용하여 Red 후보 영역과 Green 후보 영역으로 구분한 후 오류 역전파 알고리즘에 적용하여 최종 Green 영역을 찾는다. 둘째, 수평 및 수직 히스토그램의 빈도수를 이용하여 번호판 영역을 추출한다. 마지막으로, 윤곽선 추적 알고리즘을 적용하여 개별 코드들을 추출하고, 오류 역전파 알고리즘을 적용하여 개별 코드들을 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위하여 실제 비영업용 신 차량 번호판에 적용한 결과, 제안된 번호판 추출 방법이 기존의 HSI(Hue Saturation Intensity) 정보를 이용한 번호판 추출 방법보다 추출률이 개선되었고 제안된 차량 번호판 인식 방법이 효율적인 것을 확인하였다.
본 논문에서는 명암도 변화값과 기하학적 패턴벡터를 이용하여 실시간으로 차량번호판을 추출하고 인식하는 알고리즘을 제안하였다. 일반적으로 차량영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역보다 밀집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력과정에서 외부 환경에 따라 차량영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 번호판 영역에서 잡음 제거와 세선화를 적용하여 전처리후 제안한 기하학적 패턴벡터를 이용하여 차량번호를 인식하도록 하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴벡터 보다 계산 속도가 빠르며, 차량번호판의 크기와 잡음에 무관하며, 불규칙한 조명 상태에서도 정확한 차량 번호를 인식할 수 있었다.
Vehicle license plate recognition identifies vehicle as a unique, and have many applications in traffic monitoring field. In this paper, a vertical edge based algorithm to extract license plate within input gray-scale image is proposed. A size-and-shape filter based on seed-filling algorithm is applied to remove the edges that are impossible to be the vertical edges of license plate. Then the remaining edges are matched with each other according to some restricted conditions so as to locate license plate in input image. After license plate is extracted. normalized and segmented, the characters on it are recognized by template matching method. Experimental results show that the proposed algorithm can deal with license plates in normal shape effectively, as well as the license plates that are out of shape due to the angle of view.
In this paper, to overcome the failure of binarization for the characters suffered from low contrast and non-uniform illumination in license plate character recognition system, we improved the binarization method by combining local thresholding with global thresholding and edge detection. Firstly, apply the local thresholding method to locate the characters in the license plate image and then get the threshold value for the character based on edge detector. This method solves the problem of local low contrast and non-uniform illumination. Finally, back-propagation Neural Network is selected as a powerful tool to perform the recognition process. The results of the experiments i1lustrate that the proposed binarization method works well and the selected classifier saves the processing time. Besides, the character recognition system performed better recognition accuracy 95.7%, and the recognition speed is controlled within 0.3 seconds.
신경망을 이용한 영상인식은 여러 분야에 널리 사용되고 있다. 본 연구에서는 차량 번호 인식 및 특정 구역 입출 시 통제에 필요한 인가/비인가 차량 인식 시스템을 연구하였다. 이 시스템은 영상을 인식하는 기능을 갖추고 있어 차량 번호에 대한 모든 정보를 확인하고, 차량 번호판을 정확히 인식할 수 있는 기능을 추가하였다. 그 밖에 신경망을 이용하여 좀 더 빠르게 차량번호를 확인할 수 있도록 하였다.
To test the performance of the proposed algorithm, images of seventy vehicle were tested. The success rates for license plate and character recognition were approximately 98.4% and 96.3%, respectively.
본 논문은 산업응용을 목표로 효과적인 차량 번호판 인식 알고리즘을 제안한다. 자동차 이미지를 얻은뒤 캐니 에지 추출(Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 신경망으로 미리 학습된 가중치 값과 비교되며, 최종 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.