• Title/Summary/Keyword: vehicle collision simulation

Search Result 158, Processing Time 0.023 seconds

An Experimental Investigation of a Collision Warning System for Automobiles using Hardware-in-the-Loop Simulations (차간거리 경보시스템의 HiLS 구현)

  • 송철기;김성하;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.222-227
    • /
    • 1998
  • Collision warning systems have been an active research and development area as the interests and demands for ASV's (Advanced Safety Vehicles) have increased. This paper presents an experimental investigation of a collision warning system for automobiles. A collision warning HiLS(Hardware-in-the-Loop Simulation) system has been designed and used to test the collision warning algorithm, radar sensors, and warning displays under realistic operating conditions in the laboratory. the collision warning algorithm is operated by a warning index, which is a function of the warning distance and the braking distance. The computer calculates velocities of the preceding vehicle and following vehicle, relative distance and relative velocity of the vehicles using vehicle simulation models. The relative distance and the relative velocity are applied to the vehicle simulator controlled by a DC motor.

  • PDF

Collision Avoidance Maneuver Simulation of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기의 충돌회피기동 모사)

  • Hwang, Soo-Jung;Lee, Myeong-Kyu;Oh, Soo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.33-45
    • /
    • 2007
  • The collision avoidance maneuver flight simulation for tilt rotor unmanned aerial vehicle was performed by time-accurate numerical integration method based on wind tunnel test data. Five representative collision avoidance maneuvers were simulated under constraints of aerodynamic stall, propulsion power, structural load, and control actuator capability. The collision avoidance performances of the maneuvers were compared by the computed collision avoidance times. The sensitivities of initial flight speed and collision zone shape on the collision avoidance time were investigated. From these results, it was found that the moderate pull-up turn maneuver defined using moderate pitch and maximum roll controls within simulation constraints is the most robust and efficient collision avoidance maneuver under the various flight speeds and collision object shapes in the tilt rotor UAV applications.

  • PDF

Intersection Collision Situation Simulation of Automated Vehicle Considering Sensor Range (센서 범위를 고려한 자율주행자동차 교차로 충돌 상황 시뮬레이션)

  • Lee, Jangu;Lee, Myungsu;Jeong, Jayil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.114-122
    • /
    • 2021
  • In this paper, an automated vehicle intersection collision accident was analyzed through simulation. Recently, the more automated vehicles are distributed, the more accidents related to automated vehicles occur. Accidents may show different trends depending on the sensor characteristics of the automated vehicle and the performance of the accident prevention system. Based on NASS-CDS (National Automotive Sampling System-Crashworthiness Data System) and TAAS (Traffic Accident Analysis System), four scenarios are derived and simulations are performed. Automated vehicles are applied with a virtual system consisting of an autonomous emergency braking system and algorithms that predict the route and avoid collisions. The simulations are conducted by changing the sensor angle, vehicle speed, the range of the sensor and vehicle speed range. A range of variables considered vehicle collision were derived from the simulation.

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.

A study on the estimation of impact velocity of crashed vehicles in tunnel using computer simulation(PC-CRASH) (컴퓨터 시뮬레이션(PC-CRASH)을 이용한 터널 내 피추돌 차량의 충돌 속도 추정에 관한 연구)

  • Han, Chang-Pyoung;Choi, Hong-Ju
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.40-45
    • /
    • 2020
  • In a vehicle-to-vehicle accident, the impact posture, braking status, final stopping position, collision point and collision speed are important factors for accident reconstruction. In particular, the speed of collision is the most important issue. In this study, the collision speed and the final stopping position in the tunnel were estimated using PC-CRASH, a vehicle crash analysis program used for traffic accident analysis, and the final stopping position of the simulation and the final stopping position of the traffic accident report were compared. When the Pride speed was 0km/h or 30km/h and the Sorento speed was 100m/h, the simulation results and reports matched the final stopping positions and posture of the two vehicles. As a result of the simulation, it can be estimated that Pride was collided in an almost stationary state.

Remote Control of an unmaned vehicle of shortage of hands using Internet (인터넷을 이용한 지능형 무인 차량의 원격제어)

  • 김승철;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.57-61
    • /
    • 2002
  • We design Collision Avoidance System using model vehicle. The purpose of this system(Collision Avoidance System) is to maintain continuously constant distance between a forward running vehicle and a following automatic guided vehicle(AGV). For this system, we design modeling of vehicle and observe this through simulation. By sing super sonic sensors to measure the distance between vehicles and controller using 80c196kc for changing velocity of motor, we design Collision Avoidance System as maintaining continuously constant distance between vehicles.

  • PDF

AEBS Algorithm with Tire-Road Friction Coefficient Estimation (타이어-노면 마찰계수 추정을 이용한 AEBS 알고리즘)

  • Han, Seungjae;Lee, Taeyoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 2013
  • This paper describes an algorithm for Advanced Emergency Braking(AEB) with tire-road friction coefficient estimation. The AEB is a system to avoid a collision or mitigate a collision impact by decelerating the car automatically when forward collision is imminent. Typical AEB system is operated by Time-to-collision(TTC), which considers only relative velocity and clearance from control vehicle to preceding vehicle. AEB operation by TTC has a limit that tire-road friction coefficient is not considered. In this paper, Tire-road friction coefficient is also considered to achieve more safe operation of AEB. Interacting Multiple Model method(IMM) is used for Tire-road friction coefficient estimation. The AEB algorithm consists of friction coefficient estimator and upper level controller and lower level controller. The numerical simulation has been conducted to demonstrate the control performance of the proposed AEB algorithm. The simulation study has been conducted with a closed-loop driver-controller-vehicle system using using MATLAB-Simulink software and CarSim Vehicle model.

Reconstruction Analysis of Vehicle-pedestrian Collision Accidents: Calculations and Uncertainties of Vehicle Speed (차량-보행자 충돌사고 재구성 해석: 차량 속도 계산과 불확실성)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.82-91
    • /
    • 2011
  • In this paper, a planar model for mechanics of a vehicle/pedestrian collision incorporating road gradient is derived to evaluate the pre-collision speed of vehicle. It takes into account a few physical variables and parameters of popular wrap and forward projection collisions, which include horizontal distance traveled between primary and secondary impacts with the vehicle, launch angle, center-of-gravity height at launch, distance from launch to rest, pedestrian-ground drag factor, the pre-collision vehicle speed and road gradient. The model including road gradient is derived analytically for reconstruction of pedestrian collision accidents, and evaluates the vehicle speed from the pedestrian throw distance. The model coefficients have physical interpretations and are determined through direct calculation. This work shows that the road gradient has a significant effect on the evaluation of the vehicle speed and must be considered in accident cases with inclined road. In additions, foreign/domestic empirical cases and multibody dynamic simulation results are used to construct a least-squares fitted model that has the same structure of the analytical one that provides an estimate of the vehicle speed based on the pedestrian throw distance and the band within which the vehicle speed would be expected to be in 95% of cases.

Development of Collision Warning/Avoidance Algorithms using Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 충돌 경보/회피 알고리듬 개발)

  • Kim, Jae-Ho;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.647-652
    • /
    • 2000
  • This paper proposes a collision warning/avoidance algorithm using a trajectory prediction method. This algorithm is based on 2-dimensional kinematics and the Kalman filter has been used to obtain the information of the object vehicle. This algorithm has been investigated via computer simulation and showed a good trajectory prediction performance. The proposed collision warning/avoidance algorithm would enhanced driver acceptance for a collision warning/avoidance system.

  • PDF

Pedestrians Trajectory Characteristic for Vehicle Configuration and Pedestrian Postures (차량형상과 충돌형태에 따른 보행자 거동 특성에 관한 연구)

  • Yoo Jangseok;Park Gyung-Jin;Chang Myungsoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.8-18
    • /
    • 2005
  • Pedestrians involved in traffic accidents manifest unique trajectory characteristics depending on the collision speed, vehicle configuration, and pedestrian postures. However, the existing analytical models for pedestrian movements do not fully include the rotational characteristics of the pedestrians because they assume a two dimensional parabolic trajectory. This faulty assumption in the development of these models limits their applicability and reliability This study investigated the pedestrians movement at collision by computer simulation. The simulations are carried out by using HADYMO, which is a special simulation software system for dynamic movement analysis. Vehicles and pedestrians are modeled and verified via real crash worthiness experiments. Simulations are performed for various collision speeds, vehicle configuration, and pedestrian postures. Since the simulation uses multi-body dynamics, It can express irregular phenomena of the bodies quite well. The results can be exploited for vehicle design and traffic accident reconstruction.