• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.025 seconds

A Study on the Recognition of Defected Fingerprint Using Chain Code (체인 코드를 이용한 훼손된 지문의 인식에 관한 연구)

  • 조민환
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.63-68
    • /
    • 2003
  • Almost the system are usually taken by means of shapes and positions of ridge's end-points and bifurcation in the fingerprint recognition. but we studied about recognition of polluted fingerprint by chain code ridges. the results and sequence of processing are summarized as follows. (1)Capture several kinds of polluted fingerprint image. (2)Preprocessing(median filtering for removing noises, local and global histogram equalization, dilation and erosion, thinning and remove pseudo image), (3)Rebuild ridge line after Least Square Processing, (4)Compute distribution of chain code vector, (5)The results are almost same values of each vector of preprocessed fingerprint images. From the results, we can surmised more successful fingerprints recognition system in combination with other system by singular points

  • PDF

Dual SMS SPAM Filtering: A Graph-based Feature Weighting Method (듀얼 SMS 스팸 필터링: 그래프 기반 자질 가중치 기법)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.95-99
    • /
    • 2014
  • 본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.

  • PDF

On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection Techniques for SVM Speed Optimization with Application to e-Fraud Detection

  • AKINYELU, Andronicus Ayobami;ADEWUMI, Aderemi Oluyinka
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1348-1375
    • /
    • 2018
  • Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.

Human Ear Detection for Biometries (생체인식을 위한 귀 영역 검출)

  • Kim Young-Baek;Rhee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.813-816
    • /
    • 2005
  • Ear detection is an important part of an non-invasive ear recognition system. In this paper we propose human ear detection from side face images. The proposed method is made by imitating the human recognition process using feature information and color information. First, we search face candidate area in an input image by using 'skin-color model' and try to find an ear area based on edge information. Then, to verify whether it is the ear area or not, we use the SVM (Support Vector Machine) based on a statistical theory. The method shows high detection ratio in indoors environment with stable illumination.

Support Vector Machine Based Phoneme Segmentation for Lip Synch Application

  • Lee, Kun-Young;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.193-210
    • /
    • 2004
  • In this paper, we develop a real time lip-synch system that activates 2-D avatar's lip motion in synch with an incoming speech utterance. To realize the 'real time' operation of the system, we contain the processing time by invoking merge and split procedures performing coarse-to-fine phoneme classification. At each stage of phoneme classification, we apply the support vector machine (SVM) to reduce the computational load while retraining the desired accuracy. The coarse-to-fine phoneme classification is accomplished via two stages of feature extraction: first, each speech frame is acoustically analyzed for 3 classes of lip opening using Mel Frequency Cepstral Coefficients (MFCC) as a feature; secondly, each frame is further refined in classification for detailed lip shape using formant information. We implemented the system with 2-D lip animation that shows the effectiveness of the proposed two-stage procedure in accomplishing a real-time lip-synch task. It was observed that the method of using phoneme merging and SVM achieved about twice faster speed in recognition than the method employing the Hidden Markov Model (HMM). A typical latency time per a single frame observed for our method was in the order of 18.22 milliseconds while an HMM method applied under identical conditions resulted about 30.67 milliseconds.

  • PDF

Accuracy Comparison of Motor Imagery Performance Evaluation Factors Using EEG Based Brain Computer Interface by Neurofeedback Effectiveness (뉴로피드백 효과에 따른 EEG 기반 BCI 동작 상상 성능 평가 요소별 정확도 비교)

  • Choi, Dong-Hag;Ryu, Yon-Su;Lee, Young-Bum;Min, Se-Dong;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • In this study, we evaluated the EEG based BCI algorithm using common spatial pattern to find realistic applicability using neurofeedback EEG based BCI algorithm - EEG mode, feature vector calculation, the number of selected channels, 3 types of classifier, window size is evaluated for 10 subjects. The experimental results have been evaluated depending on conditioned experiment whether neurofeedback is used or not In case of using neurofeedback, a few subjects presented exceptional but general tendency presented the performance improvement Through this study, we found a motivation of development for the specific classifier based BCI system and the assessment evaluation system. We proposed a need for an optimized algorithm applicable to the robust motor imagery evaluation system with more useful functionalities.

Routing Protocol Supporting QoS in Mobile Ad-hoc Network (이동 애드 혹 네트워크에서 QoS를 지원하는 라우팅 프로토콜)

  • Kang, Kyung-In;Park, Kyung-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.189-196
    • /
    • 2007
  • In this paper, we proposed a mobile ad hoc routing protocol based on AODV(Ad hoc On demand Distance Vector) with QoS(Quality of Service) support and evaluated the performance through simulation. The waste of communication resources is reduced by establishing the shortest route suitable to QoS support, considering in advance the usable communication resources at each node. For performance evaluation, we analyzed the average data reception rate, considering the node mobility and the number of best effort/QoS data flows. We found that in the mobile Ad Hoc networks the QoS service for some specific data flows increased the average data reception rate for the QoS data flows.

  • PDF

Local Binary Pattern Based Defocus Blur Detection Using Adaptive Threshold

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.7-11
    • /
    • 2020
  • Enormous methods have been proposed for the detection and segmentation of blur and non-blur regions of the images. Due to the limited available information about the blur type, scenario and the level of blurriness, detection and segmentation is a challenging task. Hence, the performance of the blur measure operators is an essential factor and needs improvement to attain perfection. In this paper, we propose an effective blur measure based on the local binary pattern (LBP) with the adaptive threshold for blur detection. The sharpness metric developed based on LBP uses a fixed threshold irrespective of the blur type and level which may not be suitable for images with large variations in imaging conditions and blur type and level. Contradictory, the proposed measure uses an adaptive threshold for each image based on the image and the blur properties to generate an improved sharpness metric. The adaptive threshold is computed based on the model learned through the support vector machine (SVM). The performance of the proposed method is evaluated using a well-known dataset and compared with five state-of-the-art methods. The comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all the methods.

A Consideration of the Optimal Thinning Algorithm for Cadastral Map Vectorizing (지적도 벡터라이징을 위한 최적 세선화 알고리즘에 대한 고찰)

  • Won, Nam-Sik;Kim, Kwon-Yang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.54-62
    • /
    • 1999
  • Vectorizing for input processing of map is the most time and cost consuming task, and the quality of vector data depends on that processing result. Therefore, it is an important task to develop a good vectorizing system in the GIS. Thinning algorithm is the most important technology for deciding the quality of vector data in the vectorizing system. In this paper, as a suitable algorithm for map vectorizing we considered several algorithms that preserve topological and geometric characteristics, and have no distortion of the contour line. As a results, we implemented WPTA4 and well known thinning algorithm, and compared WPTA4 execution results with the others.

  • PDF

A study on Real-time Graphic User Interface for Hidden Target Segmentation (은닉표적의 분할을 위한 실시간 Graphic User Interface 구현에 관한 연구)

  • Yeom, Seokwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2016
  • This paper discusses a graphic user interface(GUI) for the concealed target segmentation. The human subject hiding a metal gun is captured by the passive millimeter wave(MMW) imaging system. The imaging system operates on the regime of 8 mm wavelength. The MMW image is analyzed by the multi-level segmentation to segment and identify a concealed weapon under clothing. The histogram of the passive MMW image is modeled with the Gaussian mixture distribution. LBG vector quantization(VQ) and expectation and maximization(EM) algorithms are sequentially applied to segment the body and the object area. In the experiment, the GUI is implemented by the MFC(Microsoft Foundation Class) and the OpenCV(Computer Vision) libraries and tested in real-time showing the efficiency of the system.