• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.031 seconds

Front Classification using Back Propagation Algorithm (오류 역전파 알고리즘을 이용한 영문자의 폰트 분류 방법에 관한 연구)

  • Jung Minchul
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.65-77
    • /
    • 2004
  • This paper presents a priori and the local font classification method. The font classification uses ascenders, descenders, and serifs extracted from a word image. The gradient features of those sub-images are extracted, and used as an input to a neural network classifier to produce font classification results. The font classification determines 2 font styles (upright or slant), 3 font groups (serif sans-serif or typewriter), and 7-font names (Postscript fonts such as Avant Garde, Helvetica, Bookman, New Century Schoolbook, Palatine, Times, and Courier). The proposed a priori and local font classification method allows an OCR system consisting of various font-specific character segmentation tools and various mono-font character recognizers. Experiments have shown font classification accuracies reach high performance levels of about 95.4 percent even with severely touching characters. The technique developed for tile selected 7 fonts in this paper can be applied to any other fonts.

  • PDF

Bag of Visual Words Method based on PLSA and Chi-Square Model for Object Category

  • Zhao, Yongwei;Peng, Tianqiang;Li, Bicheng;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2633-2648
    • /
    • 2015
  • The problem of visual words' synonymy and ambiguity always exist in the conventional bag of visual words (BoVW) model based object category methods. Besides, the noisy visual words, so-called "visual stop-words" will degrade the semantic resolution of visual dictionary. In view of this, a novel bag of visual words method based on PLSA and chi-square model for object category is proposed. Firstly, Probabilistic Latent Semantic Analysis (PLSA) is used to analyze the semantic co-occurrence probability of visual words, infer the latent semantic topics in images, and get the latent topic distributions induced by the words. Secondly, the KL divergence is adopt to measure the semantic distance between visual words, which can get semantically related homoionym. Then, adaptive soft-assignment strategy is combined to realize the soft mapping between SIFT features and some homoionym. Finally, the chi-square model is introduced to eliminate the "visual stop-words" and reconstruct the visual vocabulary histograms. Moreover, SVM (Support Vector Machine) is applied to accomplish object classification. Experimental results indicated that the synonymy and ambiguity problems of visual words can be overcome effectively. The distinguish ability of visual semantic resolution as well as the object classification performance are substantially boosted compared with the traditional methods.

No-reference Image Quality Assessment With A Gradient-induced Dictionary

  • Li, Leida;Wu, Dong;Wu, Jinjian;Qian, Jiansheng;Chen, Beijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.288-307
    • /
    • 2016
  • Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.

A Korean Text Summarization System Using Aggregate Similarity (도합유사도를 이용한 한국어 문서요약 시스템)

  • 김재훈;김준홍
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.35-42
    • /
    • 2001
  • In this paper. a document is represented as a weighted graph called a text relationship map. In the graph. a node represents a vector of nouns in a sentence, an edge completely connects other nodes. and a weight on the edge is a value of the similarity between two nodes. The similarity is based on the word overlap between the corresponding nodes. The importance of a node. called an aggregate similarity in this paper. is defined as the sum of weights on the links connecting it to other nodes on the map. In this paper. we present a Korean text summarization system using the aggregate similarity. To evaluate our system, we used two test collection, one collection (PAPER-InCon) consists of 100 papers in the field of computer science: the other collection (NEWS) is composed of 105 articles in the newspapers and had built by KOROlC. Under the compression rate of 20%. we achieved the recall of 46.6% (PAPER-InCon) and 30.5% (NEWS) and the precision of 76.9% (PAPER-InCon) and 42.3% (NEWS).

  • PDF

Implementation of the Speech Emotion Recognition System in the ARM Platform (ARM 플랫폼 기반의 음성 감성인식 시스템 구현)

  • Oh, Sang-Heon;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1530-1537
    • /
    • 2007
  • In this paper, we implemented a speech emotion recognition system that can distinguish human emotional states from recorded speech captured by a single microphone and classify them into four categories: neutrality, happiness, sadness and anger. In general, a speech recorded with a microphone contains background noises due to the speaker environment and the microphone characteristic, which can result in serious system performance degradation. In order to minimize the effect of these noises and to improve the system performance, a MA(Moving Average) filter with a relatively simple structure and low computational complexity was adopted. Then a SFS(Sequential Forward Selection) feature optimization method was implemented to further improve and stabilize the system performance. For speech emotion classification, a SVM pattern classifier is used. The experimental results indicate the emotional classification performance around 65% in the computer simulation and 62% on the ARM platform.

  • PDF

A Safety Score Prediction Model in Urban Environment Using Convolutional Neural Network (컨볼루션 신경망을 이용한 도시 환경에서의 안전도 점수 예측 모델 연구)

  • Kang, Hyeon-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.393-400
    • /
    • 2016
  • Recently, there have been various researches on efficient and automatic analysis on urban environment methods that utilize the computer vision and machine learning technology. Among many new analyses, urban safety analysis has received a major attention. In order to predict more accurately on safety score and reflect the human visual perception, it is necessary to consider the generic and local information that are most important to human perception. In this paper, we use Double-column Convolutional Neural network consisting of generic and local columns for the prediction of urban safety. The input of generic and local column used re-sized and random cropped images from original images, respectively. In addition, a new learning method is proposed to solve the problem of over-fitting in a particular column in the learning process. For the performance comparison of our Double-column Convolutional Neural Network, we compare two Support Vector Regression and three Convolutional Neural Network models using Root Mean Square Error and correlation analysis. Our experimental results demonstrate that our Double-column Convolutional Neural Network model show the best performance with Root Mean Square Error of 0.7432 and Pearson/Spearman correlation coefficient of 0.853/0.840.

Optimal Associative Neighborhood Mining using Representative Attribute (대표 속성을 이용한 최적 연관 이웃 마이닝)

  • Jung Kyung-Yong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.50-57
    • /
    • 2006
  • In Electronic Commerce, the latest most of the personalized recommender systems have applied to the collaborative filtering technique. This method calculates the weight of similarity among users who have a similar preference degree in order to predict and recommend the item which hits to propensity of users. In this case, we commonly use Pearson Correlation Coefficient. However, this method is feasible to calculate a correlation if only there are the items that two users evaluated a preference degree in common. Accordingly, the accuracy of prediction falls. The weight of similarity can affect not only the case which predicts the item which hits to propensity of users, but also the performance of the personalized recommender system. In this study, we verify the improvement of the prediction accuracy through an experiment after observing the rule of the weight of similarity applying Vector similarity, Entropy, Inverse user frequency, and Default voting of Information Retrieval field. The result shows that the method combining the weight of similarity using the Entropy with Default voting got the most efficient performance.

A case report of a surgical guide fabricated via intraoral scanning-based implant planning and wax-based rapid prototyping (구강스캐너를 이용한 임플란트 수술 계획 및 왁스 기반 쾌속조형법으로 제작한 수술용 가이드 증례)

  • Shin, Jong-Hoon;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.3
    • /
    • pp.244-249
    • /
    • 2015
  • With the recent progress of digital technology, the computer guided surgery utilizing a guide template in the placement of implant has been actively performed, and the method employing the intraoral scanner at the implant prosthesis introduced. Fabrication method of the guide template can be largely classified into design-related rapid prototyping (RP) system and vector milling system, and each of the method has its own weakness in the clinical application despite of excellent accuracy. Thus, in this case study, a working model was fabricated by the wax RP technology using images acquired by CBCT and an intraoral scanner, and the metal bushing was picked up with orthodontic resin cast upon the wax model. Using this method, a surgical guide template was fabricated and used in surgery. From this, we could obtain a satisfactory outcome clinically in the implant placement and the fabrication of the final prostheses and thus report this case herein.

Pose and Expression Invariant Alignment based Multi-View 3D Face Recognition

  • Ratyal, Naeem;Taj, Imtiaz;Bajwa, Usama;Sajid, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4903-4929
    • /
    • 2018
  • In this study, a fully automatic pose and expression invariant 3D face alignment algorithm is proposed to handle frontal and profile face images which is based on a two pass course to fine alignment strategy. The first pass of the algorithm coarsely aligns the face images to an intrinsic coordinate system (ICS) through a single 3D rotation and the second pass aligns them at fine level using a minimum nose tip-scanner distance (MNSD) approach. For facial recognition, multi-view faces are synthesized to exploit real 3D information and test the efficacy of the proposed system. Due to optimal separating hyper plane (OSH), Support Vector Machine (SVM) is employed in multi-view face verification (FV) task. In addition, a multi stage unified classifier based face identification (FI) algorithm is employed which combines results from seven base classifiers, two parallel face recognition algorithms and an exponential rank combiner, all in a hierarchical manner. The performance figures of the proposed methodology are corroborated by extensive experiments performed on four benchmark datasets: GavabDB, Bosphorus, UMB-DB and FRGC v2.0. Results show mark improvement in alignment accuracy and recognition rates. Moreover, a computational complexity analysis has been carried out for the proposed algorithm which reveals its superiority in terms of computational efficiency as well.

Establishment of Correspondent points and Sampling Period Needed to Estimate Object Motion Parameters (운동물체의 파라미터 추정에 필요한 대응점과 샘플링주기의 설정)

  • Jung, Nam-Chae;Moon, Yong-Sun;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.26-35
    • /
    • 1997
  • This paper deals with establishing correspondent points of feature pints and sampling period when we estimate object motion parameters from image information of freely moving objects in space of gravity-free state. Replacing the inertial coordinate system with the camera coordinate system which is equipped within a space robot, it is investigated to be able to analyze a problem of correspond points from image information, and to obtain sequence of angular velocity $\omega$ which determine a motion of object by means of computer simulation. And if a sampling period ${\Delta}t$ is shortened, the relative errors of angular velocity are increased because the relative errors against moving distance of feature points are increased by quantization. In reverse, if a sampling period ${\Delta}t$ is lengthened too much, the relative error are likewise increased because a sampling period is long for angular velocity to be approximated, and we confirmed the precision that grows according to ascending of resolution.

  • PDF