• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.029 seconds

DCGAN-based Emoji Generation exploiting Adjustment of Latent vector Representation (Latent vector 분포 조정을 활용한 DCGAN 기반 이모지 생성 기법)

  • Yun-Gyeong Song;Yu-Jin Ha;A-Yeong Seong;Gun-Woo Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.603-605
    • /
    • 2023
  • 최근 SNS 의 발달로 인해 자신의 감정을 빠르고 효과적으로 전달할 수 있는 이모지의 중요성이 커지고 있다. 하지만 이모지를 수동으로 생성하기 위해서 시간과 비용이 많이 들고 자신의 감정에 맞는 이모지를 찾아야 하며 해당 이모지가 없을 수 있다. 기존 DCGAN 을 활용한 이모지 자동 생성연구에서는 부족한 데이터셋으로 인해 G(Generator)와 D(Discriminator)가 동등하게 학습하지 못해서 두 모델 간 성능 차이가 발생한다. D 가 G 보다 최적해에 빠르게 수렴하여 G 가 학습이 되지 않아 낮은 품질의 이모지를 생성하는 불안정 문제가 발생한다. 이 문제를 해결하기 위해 본 논문에서는 Latent vector 분포를 데이터셋에 맞게 조정하여 적은 데이터로 G 에서 안정적으로 학습할 수 있게 하는 G 구조와 다양한 이모지 생성을 위한 Latent vector 평균 조정 기법을 제안한다. 비교 실험 결과 불안정 문제를 개선하였고 FID 와 IS 수치를 통해 성능 개선 효과를 검증했다.

Secure Beamforming with Artificial Noise for Two-way Relay Networks

  • Li, Dandan;Xiong, Ke;Du, Guanyao;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1418-1432
    • /
    • 2013
  • This paper studies the problem of secure information exchange between two sources via multiple relays in the presence of an eavesdropper. To this end, we propose a relay beamforming scheme, i.e., relay beamforming with artificial noise (RBwA), where the relay beamforming vector and the artificial noise vector are jointly designed to maintain the received signal-to-interference-ratio (SINR) at the two sources over a predefined Quality of Service (QoS) threshold while limiting the received SINR at the eavesdropper under a predefined secure threshold. For comparison, the relay beamforming without artificial noise (RBoA) is also considered. We formulate two optimization problems for the two schemes, where our goal is to seek the optimal beamforming vector to minimize the total power consumed by relay nodes such that the secrecy of the information exchange between the two sources can be protected. Since both optimization problems are nonconvex, we solve them by semidefinite program (SDP) relaxation theory. Simulation results show that, via beamforming design, physical layer secrecy of two-way relay networks can be greatly improved and our proposed RBwA outperforms the RBoA in terms of both low power consumption and low infeasibility rate.

Hybrid CSA optimization with seasonal RVR in traffic flow forecasting

  • Shen, Zhangguo;Wang, Wanliang;Shen, Qing;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4887-4907
    • /
    • 2017
  • Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.

Discriminative Power Feature Selection Method for Motor Imagery EEG Classification in Brain Computer Interface Systems

  • Yu, XinYang;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.12-18
    • /
    • 2013
  • Motor imagery classification in electroencephalography (EEG)-based brain-computer interface (BCI) systems is an important research area. To simplify the complexity of the classification, selected power bands and electrode channels have been widely used to extract and select features from raw EEG signals, but there is still a loss in classification accuracy in the state-of- the-art approaches. To solve this problem, we propose a discriminative feature extraction algorithm based on power bands with principle component analysis (PCA). First, the raw EEG signals from the motor cortex area were filtered using a bandpass filter with ${\mu}$ and ${\beta}$ bands. This research considered the power bands within a 0.4 second epoch to select the optimal feature space region. Next, the total feature dimensions were reduced by PCA and transformed into a final feature vector set. The selected features were classified by applying a support vector machine (SVM). The proposed method was compared with a state-of-art power band feature and shown to improve classification accuracy.

Novel SINR-Based User Selection for an MU-MIMO System with Limited Feedback

  • Kum, Donghyun;Kang, Daegeun;Choi, Seungwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This paper presents a novel user selection method based on the signal-to-interference-plus-noise ratio (SINR), which is approximated using limited feedback data at the base stations (BSs) of multiple user multiple-input multiple-output (MU-MIMO) systems. In the proposed system, the codebook vector index, the quantization error obtained from the correlation between the measured channel and the codebook vector, and the measured value of the largest singular value are fed back from each user to the BS. The proposed method not only generates precoding vectors that are orthogonal to the precoding vectors of the previously selected users and are highly correlated with the codebook vector of each user but also adopts the quantization error in approximating the SINR, which eventually provides a significantly more accurate SINR than the conventional SINR-based user selection techniques. Computer simulations show that the proposed method enhances the sum rate of the conventional SINR-based methods by at least 2.4 (2.62) bps/Hz when the number of transmit antennas and number of receive antennas per user terminal is 4 and 1(2), respectively, with 100 candidate users and an SNR of 30 dB.

PWM Variable Carrier Generating Method for OEW PMSM with Dual Inverter and Current Ripple Analysis according to Zero Vector Position (듀얼 인버터 개방 권선형 영구자석 동기 전동기 제어를 위한 PWM 가변 캐리어 생성법 및 영벡터 위치에 따른 전류 리플 분석)

  • Shim, Jae-Hoon;Choi, Hyeon-Gyu;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.279-285
    • /
    • 2020
  • An open-end winding (OEW) permanent magnet synchronous motor with dual inverters can synthesize large voltages for a motor with the same DC link voltage. This ability has the advantage of reducing the use of DC/DC boost converters or high voltage batteries. However, zero-sequence voltage (ZSV), which is caused by the difference in the combined voltage between the primary and secondary inverters, can generate a zero-sequence current (ZSC) that increases system losses. Among the methods for eliminating this phenomenon, combining voltage vector eliminated ZSV cannot be accomplished by the conventional Pulse Width Modulation(PWM) method. In this study, a PWM carrier generation method using functionalization to generate a switching pattern to suppress ZSC is proposed and applied to analyze the control influence of the center-zero vector in the switching sequence about the current ripple.

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.

Gesture Recognition using MHI Shape Information (MHI의 형태 정보를 이용한 동작 인식)

  • Kim, Sang-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

Locally Optimal and Robust Backstepping Design for Systems in Strict Feedback Form with $C^1$ Vector Fields

  • Back, Ju-Hoon;Kang, Se-Jin;Shim, Hyung-Bo;Seo, Jin-Heon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.364-377
    • /
    • 2008
  • Due to the difficulty in solving the Hamilton-Jacobi-Isaacs equation, the nonlinear optimal control approach is not very practical in general. To overcome this problem, Ezal et al. (2000) first solved a linear optimal control problem for the linearized model of a nonlinear system given in the strict-feedback form. Then, using the backstepping procedure, a nonlinear feedback controller was designed where the linear part is same as the linear feedback obtained from the linear optimal control design. However, their construction is based on the cancellation of the high order nonlinearity, which limits the application to the smooth ($C^{\infty}$) vector fields. In this paper, we develop an alternative method for backstepping procedure, so that the vector field can be just $C^1$, which allows this approach to be applicable to much larger class of nonlinear systems.

An Improved Predictive Control of an Induction Machine fed by a Matrix Converter for Torque Ripple Reduction (토크 리플 저감을 위한 매트릭스 컨버터 구동 유도 전동기의 향상된 예측 제어 기법)

  • Lee, Eunsil;Choi, Woo Jin;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.662-668
    • /
    • 2015
  • This paper presents an improved predictive control of an induction machine fed by a matrix converter using N-switching vectors as the control action during a complete sampling period of the controller. The conventional model predictive control scheme based matrix converter uses a single switching vector over the same period which introduces high torque ripple. The proposed switching scheme for a matrix converter based model predictive control of an induction machine drive selects the appropriate switching vectors for control of electromagnetic torque with small variations of the stator flux. The proposed method can reduce the ripple of the electrical variables by selecting the switching state as well as the method used in the space vector modulation techniques. Simulation results are presented to verify the effectiveness of the improved predictive control strategy for induction machine fed by a matrix converter.