364 International Journal of Control, Automation, and Systems, vol. 6, no. 3, pp. 364-377, June 2008

Locally Optimal and Robust Backstepping Design for Systems
in Strict Feedback Form with C' Vector Fields

Juhoon Back, Sejin Kang, Hyungbo Shim*, and Jin Heon Seo

Abstract: Due to the difficulty in solving the Hamilton-Jacobi-Isaacs equation, the nonlinear
optimal control approach is not very practical in general. To overcome this problem, Ezal et al.
(2000) first solved a linear optimal control problem for the linearized model of a nonlinear
system given in the strict-feedback form. Then, using the backstepping procedure, a nonlinear
feedback controller was designed where the linear part is same as the linear feedback obtained
from the linear optimal control design. However, their construction is based on the cancellation
of the high order nonlinearity, which limits the application to the smooth (C") vector fields. In
this paper, we develop an alternative method for backstepping procedure, so that the vector field
can be just C', which allows this approach to be applicable to much larger class of nonlinear

systems.

Keywords: Disturbance attenuation, inverse optimality, optimal control, robust control.

1. INTRODUCTION

In many cases including the optimal disturbance
attenuation problem, it is not easy to design the
optimal controller for general nonlinear systems
because one has to solve the so-called Hamilton-
Jacobi-Isaacs (HJI) equation or its generalized version
[5,8,11]. One solution to this problem is the
linearization approach; that is, to obtain the local
optimal controller for the linearized system (near
equilibrium) which is well-known to be solvable,
provided that some assumptions, such as
controllability, are satisfied [11], and to apply it to the
original system. One main drawback of this approach
is that the region where the optimal controller is valid
can be excessively small, and in general one does not
know how large (or small) it is. Thus, it might happen
that the closed loop system is unstable outside the
local region.

Recently, for strict-feedback systems, a new
solution is provided in [3] where the authors
constructed a local optimal controller and developed a
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robust backstepping [4,6] guaranteeing that the closed
loop system is locally optimal and globally stable. In
particular, the global stability is assured by achieving
the inverse optimality which is known to have
desirable stability margins [7]. This solution is also
extended to the output-feedback control problem that
achieves local near-optimality and semiglobal inverse
optimality [2].

The main objective of this paper is to alleviate the
somewhat stringent assumption made in [3], that is,
the smoothness property of vector fields. By
modifying the backstepping tool developed in [3], we
allow the vector fields to be C'. The problem is
meaningful since many systems have vector fields
which are not necessarily smooth in the domain of
interest. Note that the system should have C' vector
field, since the local optimal control for linearized
system is used. Thus, our approach is not applicable to
systems with C° or discontinuous vector field, in
general. The decisive factor which makes it different
from [3] 1s that the virtual controls are selected at each
step so that the nonlinearities of the system are
cancelled approximately rather than exactly.

This paper 1s organized as follows. In Section 2, the
problem is formulated, and several important facts are
presented. Section 3.1 describes the nonlinear
backstepping approach to design the optimal
controller, and the main result follows in Section 3.2.
[llustrative examples are presented in Section 4, and
some concluding remarks are given in Section 5.

Notation: Given a matrix 4eR™", 4; is a

matrix consisting of the first i columns and the first
i rows of A. Similarly, for a given vector x=
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[xl xn]T ERH, we define x[l-] = [xl xl-]T.
The nx1 zero vector is denoted by 0, For a

positive definite matrix P =P >0, Amin (P) means
the smallest eigenvalue of P.

2. PROBLEM STATEMENT
Consider a nonlinear system
x=f(x)+G(x)w+ Byu
in strict-feedback form:

).C] :.)C2 +]](x1)+gl(x1)w,
X2 =X3+ fo(x1, %) + g5 (X1, %)W,

(1)

Xn =fn(x)+gn(x)w+u,

where x:[xl---xn]T € R" is the state, uc R is the -

control input, w(:):[0,0)+> R?is an unknown dis-
turbance of either L, or L, and B, =[0---0 I]T.

The vector fields f; and g, are assumed to be C’

)
with £,(0)=0, and b, :=g,(0)e R™.
The aim of this paper is to develop a recursive
design procedure for a nonlinear system of the form

(1) with C' vector fields, so that a globally-defined
state-feedback controller u =pu(x) 1is constructed

which guarantees Local Optimality and Global
Inverse Optimality.

Before describing these objectives in detail, it is
noted that the linear part can be extracted from (1) as

%= Ax+Bw+Bou+ £ (x)+GH (x)w, (2)
where B, =G;(0), f"(x)=f(x)—4x, Gl (x)=
Gy(x)—- By, and

| all 1 O 0
a a 1 0
o @(0) ) 21 ?2
Ox
Ay 1) Auoyn Gp3 0
i an ayn 43 ann_
The linearized dynamics of (2) is
x=Ax+ BI'WZ + Bzul, (3)

where the subscript / identifies the local property.
Note that (4,B,) is controllable.

In addition, suppose a locally-defined cost
functional is given by

® 2
Ty wp) = | T Ox + R —y*wi wldr,  (4)

where 0=0 >0 and R>0. Note that (4,0Q) is

observable.
The dual properties that the controller u should
satisfy are described as follows.

Local Optimality: Let u;, be the H_ -optimal
controller in the region where the linear dynamics
dominates around the origin. Equivalently, u; 1is the
solution of the dynamic game min, max,, J;(u;,w;)

of the system (3) for the cost functional (4), that is, it
minimizes the cost for the worst case disturbance w;.
Because (A4,B,) 1s controllable and (A4,Q) 1is
observable, it is well known that there exist the
optimal disturbance attenuation level y* >0 and the

unique solution P = PT >0 to the generalized
algebraic Riccati equation (GARE)

1
2

PA+ATP+P(
Y

BBl - B,R'Bi }P +0=0(5)
for y>y >0, which implies that the optimal
controller #, can be found with respect to the cost
functional (4) for a disturbance attenuation level
y>v" >0, and the value function [7,8] of the game

min,, max,, J; (4, w;) 1s V(x)= x! Px. In this case,

the controller #; 1s called

suboptimal H

controller [11] of the form

Uy =Ly (JC) = —R-lBng

and the corresponding worst case disturbance is

1
wp =V (x)=—5 ! Px.
Y

Therefore, for local optimality, the controller

1 =w(x) should satisfy
Z—;‘(O)x =-R'Bl Px. (6)

Global Inverse Optimality: We design the
controller # so that it achieves the global optimality

for the original nonlinear system (1) with respect to a
globally-defined cost functional

J(u,w) = [:’ [q(x) + r(x)u® —y*wT wldr (7)

for some positive definite function ¢(x) and
strictly positive function r(x). This is equivalent to
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satisfying

min max [q(x) U — 2w w+ V(x)J ~0 (8)
U w
for a value function V(-): R" - R. Furthermore, for

the local optimality to be meaningful, they should
satisfy

1 8%g

———(0) 0,

> r(0)=R. (9)

Our design relies on the robust backstepping
developed in [3] where it is essential to factorize P

into the form P =I'AL where

I 0 - 0
—0, 1 ' :
L:= .11 : ,
0
RS AR I P R

A :=diag(oy,:+,0,).

Clearly, Ly is invertible for 1<k <n. Associated
with this factonzatlon, we define the following.

a[l-] = [aﬂ aﬂ-}, 1<i<nm
U = [%’1 al-,-],

. ] T
(X[O] =0 (I[n] = On
o=l L= D=L,

Some important properties related to this
factorization are recalled below. See [3] for details.
Lemma 1: Under the linear transformation z = Lx,

1. For lﬁkin, Z[k]:L[k]x[k].
2. Let A=LAL"' and B,=LB,. Then, A has

the same structure as A, that is

1<i<n-1

1<i<n.

al 1 0
521 ;22 1 o 0
H _ . . . . :
;n—l,l 511—1,2 En—1,3 o 1
B Enl EnZ ;n3 B Enn_

and the linearized dynamics of z;; becomes

O | —
Z[k]= A[k]Z[k] -{ + Bk 1<k<n
Zk+1 |

T _r7 _
where B1=[b{ bﬂ and Bi[k] is defined

by

AT
By =(Bi)yy = [bl bﬂ'

3. Let E[i] = [;;ﬂ Eﬁ] for 1<i<n, then
—_ _1 —_— — —_— —_
a = 4ily) ap [a[i—l]A[f-l] ai-l,f—l] (10)

3,: =b; - a[z‘—l]El[i—l]‘

4. Let O=I")'oL!, then the GARE (5) is
modified in z -coordinates as, for 1<k <n

T — 2—T—
220D A ik = 2K Qpfin) ~ Y Vikvik
22" Az = 2" Oz —v* 314, + RS2, (11)

_ _7 o
where v (Zj4)) = L215’ kBgie and  v(2) =
. B{Az This property implies that A[k] 18

and the value function

dynamic game
min, max,, J;(u;,w) is V(z)=z Az which is
the same form as the one in x -coordinates.

5. For 1<k<n, VZk(Z[k]) Vlk I(Z[k 1])+ Ska,

HurW1tz for 1<k <n,
associated with the

and vy(z) = J5b 8121

During the derivation, we need second-order
derivatives of a C' function multiplied by another C’
function. The following result is a tool regarding this.

F(),G():R" >R be (!
2-(0)=0,

Lemma 2: Let
functions with F(0)=G(0)=0 and

1<i<n. Then,

2
0 [F(2)G(z)]] =0, 1<i,j<n
82 Z;
z=0
Proof: Since F,Ge(C 1, one has

—(Z)G(Z) + 1 (Z)—(Z)

1 l

—[F (2)G(2)] =

Define Fé (z):= %(z)G(z) and G} (z)=F (z)%(z).
Note that the property F(0)=G(0)=0 guarantees
the existence of the continuous functions F(:),

G,():R"+— R, 1<k<n, such that

F(z)=FK(z)z; +--+ F,(2)z,,
G(2)=Gi(z)z;+ 4G, (2)z,,
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[ 1
where F,(z)= jo a-F(w)dt, Gy(2)= jo 5j—kc;(q;z)
dt. Note that F{(0)=---=F, (0)=0, since 2£(0)
1 n azk
=0. Let e

; be the j th elementary basis in R”,
then

Fl(ge.)— FL(0 Fl(se.
6FG (0)_11 G( J) G( )th G( e]).

Z . i £—0 bt g0 £

Since Fé(aej):—g—g(eej)G(gej), it follows that

] OF
Fg(ee;) =[5 (ce;)e + Fi(ge;)|G,(ge;)e, and that

2¢(0)=0. Similarly, one has 22(0)=0. Thus,
j J

the assertion follows. []

3. LOCALLY OPTIMAL AND GLOBALLY
INVERSE OPTIMAL CONTROLLER

One solution to achieve two goals, local optimality
(6) and global inverse optimality (8) and (9), is the
robust nonlinear backstepping procedure which
provides a flexible design framework via the
appropriate choices of the virtual controls and the
control Lyapunov function (clf, [1]). As mentioned
above, the overall flow to solve the problem is similar
to that of [3]. That is to say, the virtual controls are
selected properly at each step such that the
backstepping design results in a nonlinear system
whose linearized dynamics near the origin become

z :_/IZ‘F-E]WZ +Bzu[ (12)

in z -coordinates where z = Lx. On the other hand,

the c/f 1s chosen as ?(z) =z Az which is the value

function of the dynamic game for the linearized
system (12). Using the virtual controls, we construct a
global diffeomorphism z=®(x). With ® and the

clf _I;(x), the optimal controller is designed and

furthermore, it will be shown that the c¢/f happens to
be the value function of a game for the original
nonlinear system. Section 3.1 focuses on the nonlinear
backstepping which successively constructs a global
diffeomorphism z =®(x), and the design of optimal

controller is described in Section 3.2.

3.1. Nonlinear backstepping

Conventional backstepping relies on cancelling the
nonlinearities, which requires the smoothness of
vector fields. However, note that the backstepping
approach provides lots of flexibility during the design
step. In this subsection, keeping this advantage in
mind, we relax the smoothness assumption by

choosing new virtual controls and a c/f. The main idea
is to cancel the nonlinearities approximately rather
than exactly.

Define
§:=max{d;}, & = M (Q) (13)
1<i<n (n+1)o

and choose £>0 suchthat s<¢g".
Step 1: Let z; =0(x) = x;.

the subsystem z;; 1s obtained as

Then, dynamics of

. H
H=anx+x+ i (q)+ g (x)w

. _
=amn +% A () + gy (upw

in which g, :=g. The virtual control g for x,

is chosen as where

- —~ —H
ailZiy) = apgny or ()
af{(-) is to be defined later. Using (10), the z -

dynamics is derived as

. — H
zi1=amzpy oz + A0 (gh)

+(xy — gz + :él(z[l] w
—_ — ..._.H —_
=anfin T (X = 0L1(Z[1] )+ /1 (Z[l]) T gl(z[l])wa

where

—H _ —H
71 ) =o' @) +py (),
p; () = A (2

By (11) and by choosing the value function as
I_/—](Z[l]) = Z[]{]AU]ZU], the time derivative of Vl
along the trajectory of (1) becomes

- T — —H
V1= 228 mlapgny + 1 (2ny)

+ (3‘?2 - 51(2[1] )) + El(z[l] )W]
2

+22151[x2 aita (Zl])+P1 () (zp)]

where 3 () =" g, (21)6121*-12- @A,

_ - — . - H
and 7 (7)) = 2(g1g1 ~bib1 Az Since p,

and E{{ are Cl functions vanishing at the origin, a

continuous function ,,; given by

0

0 22, [p1 (Tzq) )+h1 (Tzldt

El 1(2[1])



368 Juhoon Back, Sejin Kang, Hyungbo Shim, and Jin Heon Seo

: ~H — _
satisfies P, (zpp) + hf{ (Zr171) = 3 1(zq)z1-  Moreover,

it holds that

5[1]( | 7 P )(O) 0, since

0)=0

__7p )
52[1] (0)—27 ( 1(O)g1 (0) - blbl)A[l]*O

where g (0) = g,(0) = p, is used. Hence, 1;,(0)=0.

Now, choose a smooth function () such that

| 51 1(2[1]) - E] 1(2[1]) <&, 61 1(0)=0,

_H —
o1 (2[1] )= ~01 1(2[1] )Zy.
—H

and select alH (zpy) as

Then, it follows that 7, (0)=0

, aZ[I] (0)=0 since

3_H

1 oz
Thus, we have

L = 2. T 2. -1
Vi=—q(Zn) Ty w w=y" [w—y|
+228) (% — o) (7p1) )

where the function ¢,(z;;) is defined by

J— . T I _..._H
0,Zm) = 2 Qpfm + 4; (2

—H — -H —
q1 (77) = =229, |:0L{{(Z[1]) +p, (zpp + ni (z )]-

2 A

It is easy to check that >(0)=0 which is
5(2[1])

guaranteed by Lemma 2, and it entails

2 a(2[1])

Note that 5{1 can be written as

—H, \_ TT, — 7
q, (zr11) = 713 [A[l] ITp1(zy) + (g A } z

where  Tpy(Zp) = w1 1(2np) = o11(p) — x11(zpy)  and
that |z;((zpy) [<e. It can be shown that the function

- T | = — =T
ql(z[l]) =2 [Q[l] T A[1] It H[I]A[l] } 2]

1s positive definite and radially unbounded with
respect to zp;. Indeed, from the fact that

5[1] > Mmin (é)s

the claim 1is proved since for

Z[l] * O,

9171 = Q= 2818) [l 21y I
>(Ain (Q)—8€" (n+1))]|zp5]2=0.

Hence, ]71 satisfies the desired dissipation inequality

-~ — 2 - 2
V1= —ql(Z[l]) + 'YzWTW_ 77 w- Vi |

_ (14)

when x, =g,(z;))- Therefore, the subsystem z;; 1s
Indeed, Z[l] (f) —0 as

w(t)el, [10] and zp(H)el, for w(r)el,.
Moreover, the subsystem has the globally
exponentially stable equilibrium z;; =0 in the case
of w(t)=0.

Inductive Assumption: Suppose there exists a
coordinate transformation denoted by

stabilized. t—>o for

T
Zji-1) = Ppi(Xji—17) = |:(P1 (xr17) ®;—1 (Xi-1 )]

such that the xj;_j; -dynamics in new coordinates

becomes

I

Oz 2
Z[i- 1]*A[; 17—+

—H L
1 @D Gpim (i)W
where

Gii-1(7i-171) = (G- (Ziap)

_ (15)
= [gl(z[l])

_ T
g 4z )]

]

(0)=0. It i1s obvious that

with Gl[z 1](0) Bl[z 1]’::11’1(11(.[I 1] |:f1

a?[i—l]
6Z[i_1]

with 73_1](0) -0,

zi;-11 = @pigy(x;-1))  is @ global diffeomorphism.
In addition, suppose that

- - 2. T
Vi~ _ql;l(z[i—l]) Ty w

+ 221'—] 81-_121-

2 — 2
w—=y IW_V;'_ll

where 4., and y, | are givenby

— T = —H
4,1\ Zi-11) = 21 Qi1 T 45 Fi-11)

1 —7

55—1(Z[f—1])5 Yz Gl[z 1](Z[z 1AL Z-1)s
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&°
q” —=-(0)=0 and has the

and that -_H satisfies
i1 Az 1])

following structure

—-H
q; 4711

T — —T
= 2] [A[i—l] TT 192 -1)) + T Z—1) A } Z[i-1)

ﬁ[;;l](z[f—l])
- 7u(zm) 0 0

Ezl(Z[Z]) 522(3[2]) - 0

_Ej_],](z[i—l] ) E;‘_laz(z[i—l] ) E;‘_],;'_l(z[i—l] )_

(16)

Finally, suppose that the (i—
can be constructed of the form

1) th virtual control

— — —H
ai-1(Zi-1) = apifp-1 + o (Fm1p)

—H
with &7 (0)=0 and 6“1 S0 =0.

Step i(i<n): Let z; =0;0;) =% — q;1(zj-1)>
DO (x5 11)
and define Z[i] = (I)[I] (xm) = =] .
®; (Xp;1)
By the inductive assumption, we have

Oq.
Zi=Xip t f(x[l]) t8; (x[z])w_ i
82[I -1]

Z[i-1]

= Xy +a[;](D[; (Z[;])Jrf (‘I’ (Z[z]))

Og,y
+ g (zi))w - Z[i-1]
Oz 11
Thus,
_ _ N
z; = X~ adZp)) + a7 + aalzin

—1
+a[;][<1>[1] (z1) — L ]
+ i ((D[_g} (Zzi))+g; ((D[_f} (Z)w
3g,

1
aZ[z -1 [I =] Z

—H _
tf [f—l](z[f—l]) + Gl[f—1](z[f—1])W]-

If the virtual control ¢;(z;;)) for x,; ischosen as

aZ) = o + o (),

where af{
(by (10))

Zi T aifi (X1 —aZ )+ f; (z17) + gf(Z[f])W,

will be chosen later, z; is reduced to

where

?fl(z[i])::
—H
ENE a[z](fb[z](z[z]) Lt |+ £ (@ ()

G 0,2
A[H]Z[z ]
52[; =) Z;

80«1 17,
Oz 1) Fii i)

—H —H
oF (Z[f])+p— (1)

O —

N
gi( P (zp)) - Gipi-11\Zi-11)-

g(z) =

[i-1]

_ op!
Note that p?(O) =0 and 72?—(0) =0, 1</j<i
J

Indeed, consider the identity:

op; (77 0Dy, | 9
= ap;) o7 (zrip) — Ly |+ ——"az[ ] (‘D[;] (z:7))

T
— Oi——2 0 aaz 1
—| Ali-1fi-1 +{ }) ( )
[ T {52[11 Oz(1)
o A I— -1 i—1 +
aZ[l'__l] {GZ[I] L ]Z[ ] I

T
_ TV 8 | O0g.
H oi-1
—[f i1 (Z[f—l])J [ ]
[ ] 52[1] aZ[f_l] |
: —H
a1 | 91
- 5 (zip) |-
Ozi-qy | 07

By the inductive assumption, the assertion follows
since

/ | \
P 0y F@m (4 ﬁ} - L
— Y] i i
Oz Oy
\ Xi=0 /
o ot
+——(Pp1{(z;7)
62[1‘] z[i]z (17)
—1
o D
p— . Z)
OXi; Cin) {az : Gia)
O M
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As a result, the dynamics of Zj;) 1s deduced as

0.
. — —H — i—-1
ZU = A T f [I-](Z[f]) + Gl[i](z[i])w +[

51[5—1](Z[z‘~1])

g.(z)
the structure of (15) and satisfies 51[1.](0):1_31[1.]
since, by (10), it holds that

where 51[ i](z[f]):z{ J, which preserves

oa.;_ 1(0) —

1]
=b; - a[f—l]_gl[z‘—l] =b;

g0 =g;(0)- G110

Define ¥ (z()) = 7, 4(2(;-1)) + 8,27
the time derivative of 7, along the trajectory of (1)
is
_VL;':V;;' 120,22
=q;((Zi-1)
+'YWW 'Y IW VIII +2'ZI 183 IZ
+20,z; [a[;ﬁs] + (X1 — a;(z[;]))
+f; (Z[f])+§;'(z[i])W] (18)

S _
=i ['—l]Z[z'—1]+221'—181’—121' + 261’21'“[512 (7]

2—T 2—T —
29wy LS g )

+28.z; [xm ~ai(z) + 71; (2111 ]

where

I —r

vilZi) = vio(Zy) + — g, (71))9;z;

1,
Yz G-

By applying (11) with some matrix algebra, one has

"Z[];—l]—Q_[g_l]Z[i—l] +2z; 10;4z; + 255255[;-]2[1']
=22, Ay A ‘_1]Z[i— 11122;_10;12;
+20,2; g ]Z[r]ﬂ’ Vlz Vi
- Zz[f]A[f]A[z]Z[z] + sz; i1V

Y N
=2 Qp i~V (Vivi = Vi vii):

Furthermore, substituting this result into (18) and
completing the squares with respectto w yield

Xi+l —&i(z[i]) ,

T
= Z[I']A[i] Z[i] . Then,

- I —= 2. T 2 — 2
Vi= T Qufn TYw w1 [w—y,|

2~T— —T — 2~T— =T =~
Y (Vi Vz"‘vz‘—lvf—l)“y (VliWi_W,i—IW,i—l)

—H _ —H
~ g\ F-1) 229, [xm —a;(Z) + (7 )]

If one recalls the definitions of ,, . v, and

vi;p then it follows that
~T ~ ~T— —T —
Y (VI Vi Vi—IVi—l) - (VleZz V59 i-1V] 1-—1)

—r 1
=228, 1g; +—5 28,897
Y

—(2z ;;;; b + —2%;h i 0i7
V
= %Zﬁ; (g.g g ~bibi 08,2 +228;(g iy - bivii)
= 228,77 (2.
where

—H L 1 |— — —T 1 — 7 —-T7
hi (Z[i])"y_{g Gl[: 11~ biB1[i-13 2(8 8; ~bibi )}
< A

It can be easily shown that };f[ (0)=0 and

a——--(0) 0, 1<j<i Thus, j, becomes
= T 2T 2 -2 —H
V;'_"Z[i]Q[i]Z[i] YW w—y" [w—vy,| _(]i_l(z[z‘—l])

+28.z, [ = a7 )+f (Z11) + b (Z[’])]

We define
— N T— —H
9 {71i1) = 21Oy +q; (713)

—H —H
q; (7)) = q,_ (1)

_ _y _y (19)
—20,z; l:()ﬂf (1) +p; (7)) + b (Z[f]):,*

Then, j7. becomes

RN — 2. T 2 - 2
Vi:_ql-(z[i])""'Y w w-—=y Iw_Vil

+281'Z£[xi+1 — af(z[i] ):|

H

Now, we choose ;" so that a dissipation inequality

such as (14) is satisfied and the virtual control g, is

smooth. The design of af[ begins with factoring out
the function El.j from the high order terms of
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D, +ﬁf{, namely

—H -H — —
pi (Z[i]) + h;‘ (Z[i]) — Kﬂ(z[i])zl +oet Kfi(Z[i] )Z;‘ (20)

with Eg(z[f])» 1< j<i, being continuous functions.

Again, this is always

._H _ .
P; (Z[i]) + hfl(z[i]) eC!  with

because
—H Iy
p, (0)+77(0)=0,

possible,

and ., is given by

(7)) = j [p, (tz7) + i (1zp))dk.

Furthermore, it is guaranteed that .(0)=0 since

aj [51 h }(O) O

J

Choose a smooth function 4 {.].(-) : R' R such that
loi(z17) — k(7 I< 8 6,(0)=0. (21)

With these functions EI.}., af{ (z;1) 1s designed as

_H — —
o (Z[z]) = _Gfl(z[i])zl —“'_0;;(2[;'])253 (22)
2 H L Py
which guarantees -(0)=0 and S—=(0)
a(zm) 2 8z

= Opy
Remark 1: The key point to approximate the non-

: . —H -H . :
smooth nonlinearity p, T+ hf] is on the construction

of the smooth function 4 ; satistying the condition

(21). However, this is not easy, because the constant
€>0 is very small and ; is a multi-variable

function, generally speaking.
One way to this end is to make the best use of a
class of smooth functions y(-): R+ R of the form

~1/x

e 7, x>0
y{x)=

0, x<0

which 1s sometimes called a “bump function”. See [9]
for another useful smooth functions. Note that these
functions can be patched with some continuous
functions to construct a smooth one when Eij is the

function of one or two variables. See the examples in
Section 4.

To complete the inductive argument, it remains to

show that gf{ admits a structure of (16) and stability

properties as the first step is preserved. Indeed, define

ng(Z[;]) 0,,](2'[;]) K;J(Z[;])
Then, it follows from (21) that |Ey.(z[i])|§_ e. The

, : —H
first assertion regarding the structure 4. can be

deduced from
E]-f[(z[i—l])
= g1y~ 287 [&fl(z[i]) +p; )+ b Gy )}
= 2y {A[ihl]ﬁ[i—l](z[i—ll) + i) Ap- 1 } “Li-1]
+28.z; [nﬂ(z[z])zl +eee R;;(Z[ll)z ]
:Zgl[A[f]ﬁ[f](Z[f]) + () A }Zm
where we used the following identity:

T —
= 21 A pi-1i-1]

+SZ(TC T +T[z i—1 l)

T I
2 A T Ly

Before proceeding, we introduce the following.
Lemma 3: Given i with 1<i<n, let £ and

¢" are given by (13). Suppose each function f ,,

1<k<j<i, chosen during the steps 1 to i-1,

satisfies | g jk(z[ RN cR/. Then, the
function ¢ (z;)) given in (19) is positive definite
and radially unbounded w.r.t. zp;.

Proof: Let z;;#0. Since lEjk(z[j])E g, We

have
7.z = 20 (O 1+ A T + Ty 2
7)) = 27Oy mHm )2

Z[le[zf[zﬁZ}:ZS 72 k()

j=1k=l1

i J
> hnin (Ol 211 =286 > |22 |

j=1k=1

> Momin (@M 2117 I = 88+ Dl 2 11

Note that since O >0, it follows that @ >0 and
_Q_[i] >0. Considering the identity, with veR’

being the eigenvector associated with  A;, (Jr;1),
_ Y p—
)”min (Q[z]) H Y, H =\ Q[I.]‘V

oo o]
> Aanin (O VI,
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one obtains Apin (Q);) = Amin ().

Therefore, we have

2
EnL

9.2 % | Main (O =881 +1)

> [kmin (é) - 88* (” + 1):|| Z[z'] ”2 — Oa

which concludes the proof. [
Note that this result ensures that for each i, there

exists k; >0 such that
P — =T
Oy ™ AT * M = Kili > 0, (23)

where I, € R”™ is the identity matrix.
Regarding the stability, first note that g (z;)) is

positive definite and radially unbounded by Lemma 3.
Hence,

— - 2. T 2 —
Vf=“q1-(z[z])+'}’ w W=y IW—wl2

S—ai(z[f])JFYZWTW:.

which implies the stability of the i th subsystem.
Particularly, z;(1)—>0 as t—>o0 for w(t)el,

and zp(t)€ L, for w(t)eL,. Furthermore, Z[) =
0 i1s the globally exponentially stable equilibrium
point when w(¢)=0. Thus, the induction holds for
i=1-,n—1.

Step n: Let z,=9¢,(x):=x, -, (7,-)- The
dynamics of z, is given by

5a n—1
Z[n-1)

= a,®@ @)+ (@7 (2) + g, (@7 (2)w

_ 8an—l
OZp-1]

Z'n:fn(x)"'gn(x)w"“ 2[n—1]+u

Z.[n—l] + U

= apfEt ?nH(z) +g (2)w+u,
where
7@ =pr(2)
= @7 ()= Lz ]+ £ (@7 (2)
8o, [ 0,
- aZT::] [A[n—l]z[n—l] + { Z: ” (24)

5& -1—=H
_ n f[n_l](z[n_l])

Oz

_ . oyt —
()= 2,(@7 (@) -—LG11(Fny)
8Z[n_1]

Now, the global z=0P(x) 18
constructed and it transforms the system (1) into

diffeomorphism

s=dz+ 77 (2)+ G(2)w+ Byu, (25)

whose linearized system at the origin is of the form
(12).

3.2. Optimal controller design
Choose the clf as

Vi=y,  +8,25 =2 Az (26)

then, the time derivative of V becomes

- T .
Vi(z)= ~Z[n-1] Q[n_l]z[n—l] +2z, 10,12,
275 W= Ve
_qn_—l(z[n—l]) + 28nzn[u + a[n]Z[n] + P, (Z)]a
(27)

where v(z):= ;n_1+y%§n5 z =YL251TAZ From the

relations (10) and (11), we have

T — —
~Zn-1)Qpp_1fin-11 + 22n18p-125 + 20,2y apy?

T —_—
= 22[1)A[n-1) A[n-1Fn-1]

2—T - —_
Y Vi p-1vi, n_1+22n—16n—lzn +20,2, anf

T A5 2—-T
=2z AAz+v VI n-1Vi,n-1

TH. .2-T— _ p-1q2.2 . 2-T -
=2 Q2 —Y v vt R 042y ¥V v i

Besides, substituting this result into (27), adding and

2. T

subtracting ;(z)u2 +v"w" w, and completing the

squares yield

17(2) =0z -G W 2)-R 18222 - 55_1(%—1])

- 2 2. T 2 - 2
—r(z2u” +y'w w—y Iw—\,n|

+r(z)u - E(z))2+25nzngf (2)

2, ~T— —T —

+Y (VnVn“Vn—]Vn—l)
2, ~T— —-T -—

Y (v; VZ_Vl,n—IVZ,n—l)

in which p(z):= -—;_I(Z)BQT Az. By similar argu-
ments used in Step i of the derivation,

2, ~T— —T — 2 ~T— T
b (VnVn B Vn—lvn—l) - (Vl \78 Vl,n+1Vl,n-l)
1 — —T — T
= ;'Z_Znsn (gngn - bnbn)anzn
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+2Z 0 (g ;n—l_gngl,n—l)
=22,0,} (Z)
where
n(2)

1 — —T
'Y g Gl[nhl] brBi[n-1]

Thus, by defining the function a(z) as

9(2)=2"0z+ 4 (Zu)) + G () - RTH3222
22,8, (2)+ 1 (2)), (29)

V' 1s reduced to

V;(z) = —%(z) — ;Ez)uz + yszw — 72 lw—y |2 (30)
+r(z)(u-p(z))*.
Since  p (2)+K(2eC!,  pHOy+pT©0) =0,

and —aff[EH+th(0) 0, 1<j<n which can be
J

shown easily (such as (17)), the existence of
continuous functions ,.():R" > R with i (0)

=0 1s guaranteed such that

o @D+ R @) = (D7 + 4, (D)2,

=E[n_1](z )Z[n—1]+Enn(Z )Zys

where E[n_]_](z):: [Enl(z) En,n_l(z)]. Define

ﬁ(z):_ l:H[n 1](Z[n 1]) 0, }

o7 0

Then, it follows that Q + AIl + T k,I, for some
k, > 0. Using the identity

f— T —
z' Allz = Z[n-l]A[n—l]H[n_l]Z[n—l]’

5(2) is reduced as

5(2) :ZT§Z+Z[];1—1]\:A[H—1]ﬁ[n—1] + ﬁ[n—l]A[n—l] }Z[n—ll
22,8, (E[n_1]z[n—1]+EmZn)
+G ) - RS,
=21 (Q+ATIHT A)z-28,, il 2,
+28,(— )25+ (2)-R 18222
31

We now state the main result of this paper.
Theorem 1: There exist a positive definite, radially

unbounded function g(z) and a strictly positive

function 7(z) such that the controller

u=u(z):=—7 (2)B; Az (32)

is the robust optimal one for the system (25) in the
local and global inverse sense with respect to the cost
functionals (4) and (7) in z -coordinates, respectively,

for the worst case disturbance w=v(z):=

LGl (2)Az. In addition, z(f)—>0 as r—o0 for
Y

w(t)el,, and z(t)el, for w(t)el,. If w=0,

then the origin is globally exponentially stable by this
controller.

Proof: It is clear that
*qlh N
—*=(0)=0 by induction

é(z[n_l])
and Lemma 2. So, it is only needed to find a strictly
satisfying »(0)=R such

that g(z) is positive definite and radially unbounded.

;(O) =R renders

1 8%

17 0)=0.

since

positive function #(z)

By Young’s inequality one has, for p >0,

_ 52
T —T
28nz[n~1]l([na1]zn < Pl 2y || + ; || K[n— 1]||

Then, the function E(z) which is already reduced to
the form (31) can be again modified as

— — = =T _
g(z)=z" (Q+A+TT A)z =282, 11K [n-1Fn
28, (<)t G(2-R 8223

52
2k, 2|2~ Pl P ="l ey |2
p
+28,,(—x )22+ (2)-R 18222

=(k,,~p)|lzlP+G(2)-R1—(2))8222,

2Knn(z)

where y(z) =224 LRl )P

It is rather obvious that y(0) =0. Therefore, 5(2)
is positive definite and radially unbounded provided
that p <k,

(k, — ) z|I* .
With p =

and ;_1 >R 4 v(z), namely 5(2) >

” , one particular choice of a function

r(z) suggested in [3] is

. -1
(2= (\/R‘2 22+ x(z)) ]
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2 | _
_ Km(z)+ 2 || T

2
x(z) 5 k, K[n_u(Z)H ’

n

where r(z) 1is clearly a continuous positive function

with 7(0)=R and ;2R '+y(z), VzeR".

Therefore, the controller (32) satisfies the local
optimality (6), i.e.,

a—“(O)Z =—R 'Bj Az,
0z
where —R_lBg Az 1s the local optimal controller (6)

in z -coordinates. Moreover, the global inverse
optimality follows, since the condition (8) holds from
(30), namely

min max [a(z) 0 ;(z)u2 — yszw + 7(2)} =0,

U w

which means that the c/f (26) is, in fact, the value
function of the dynamic game min,max,, J(u,w)

for the nonlinear system (25), where the cost
functional is given by

J(u,w) = Igo [a(z) + ;(z)u2 — 'yszwJ dt.

Another possible choices are also depicted in [3].
The controller (32) and the worst case disturbance

w= ;(z) satisfy the dissipation inequality

V(2) < —q(z) - r(2)u® +y2wl w

<—(k, - p) | 2 I +¥*w w,

which implies z(t) >0 as t—>o for w(t)el,

and z(t)e L, for w(f)e L,. Moreover, the origin

of the system is the globally exponentially stable
equilibrium in the absence of a disturbance. ]
Remark 2: Because the smooth virtual control g,

1<i<n-1, approximately cancels the nonlinearities,

some remaining nonlinearities are turned over to the
next step after being differentiated. Consequently, all
the undesirable nonlinearities are condensed in the

terms gil and EHH+Z”H of (29) at the last step.

Note that the term gnH_l is identically zero in the

scheme of [3]; the nonlinearities are exactly cancelled
out. Thus, it is desirable to choose Efj sufficiently

close to i, to reduce the magnitude of Ef_l,
which is closely related to the magnitude of control
effort.

4. EXAMPLES
Example 1: Consider the following nonlinear
system
f1=% + A () +w, 12=x3, x3=4, (33)

where we L, or L, and
FH () =x2,if x; >0, 7 () = 0, otherwise. (34)

Note that the approach of [3] is not applicable since
le is only cl. Suppose a cost functional is given

by J(u,w)= I;O[xT x+u’ —25w° ldt. Considering

the linear part of (33), it can be seen that GARE (5)
admits a unique solution

Pu P P3| [264 270 113
P=\p, Py DPp|=1270 520 259,
P3P P3| 113 2.59 250

which can be factorized as P =L’ AL where

1 0 0 1 0 O
L= —011 1 01=]0.61 1 0
_—'(121 —CL22 1_ _045 1.04 1_

A = diag(8;,8,,8; ) = diag(1.20,2.52,2.50).

The optimal controller for the linearized system of
(33) is u; =—pi3x; — Pr3Xy — P33X3, which renders
two equilibriums (0,0,0) and (0.44,-0.19,0) of
(33) locally stable and unstable, respectively. Note
that this system is unstable in some region, and thus
the controller is modified to guarantee local optimality

and globally inverse optimality of the closed loop
system. At first, compute

. aip 1 0 —0.61 1 0
A=|gs an 1 |=|-019 043 1
231 am asm] (009 —0.62 1.04
5l [ 1] [140 -079 0.18°
B1=|by|=|061], 0=[-079 208 -1.04),
by| [045] | 018 -1.04 1.00

— }"min(é) — — —
= S = 0.03 for 0=0,=2.52.

Pick £€=0.02<¢", and k3 =\, (Q)— 48 =0.09.
Step 1: Let z =x. Note that f

expressed as f| =42, where i, isgivenby

which yields &

can be

E] 1(2[1]) = Zl,if Z > 0, El 1(2[1]) = O, otherwise. (35)
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Choose _(;l 1(2[1]) = Zle——O'Ol/Zl for Zy > 0, gn(zm) = 0,

otherwise. Let alH =—61 2

so that g, =072 —
G171

Step 2: Let z, =x, —; and define

—-H —-H —-H —H —g

d> ~— 4 "28222(012 TP, +h2)
__H —

-H  Oqy (- 0oy —H

Py = angn) t 22 f

. 52[1]( iy ) 7y U

Note that Bf can be decomposed into E?z

—-H -H . I
Prg— 1 f; Where Prs 18 smooth, and the C

function —oy;f; can be written by —o;1f] =57

with 5, =-0y1%;- Choose g,,=—-0i151;, Which
is smooth and it holds that |5, — /<& Define

~H_ ~H -H - - - —H
a2 = Py hy T 02181, SO that a2 = 0[2F[2] ~ Pas

_H —_—
~hy T o0214-
Step 3: Let z3=x3—(g, for the final step.

Following the derivation of the paper, the functions

py of (24) and 73 of (28) can be factorized, i,

Py = Fi21 + FoZa + F373 and  p3 =gz +H2

+ {423 where

—H —H
= oo w2 = Oy - 5(12( St
= aill” s~ a1 = \Tontxk
1T Ty, AT g, a2 g e K

Oas I -
_%{_allKll_?(gz_bz)Bl +0‘11011]’

= .2_5‘&5_5&?— Oy 1 (_2—52)8
2 621 622 422 822k 2”}’2 g2 )72 P

— 0 — 1=

F3-=~ oz, Hl"";_z"(g3_53) 1s
_._l——-._.__ __._1——2-2
Hz*—?z‘(gggz—b#)z)%s H3-—“2?(g3—b3)53-

-H —H _— — —
Therefore, p, + 53 = k3121 T 13222 T k3323 Where
3

K31 F1tHp k3= Fat Hy and y330= F3+ H3,
and the resulting optimal controller becomes

u=n(z)= -(\/1 +y° + x)63z3 where 7y = 28%’3 + é

-2, =2
(K31 + Ksz)'

l

0. Nonlinear

\ - = = | inear

0.051

States
o

-0.05+

0 7 4 6 8
Time

10

Fig. 1. Evolution of x without disturbance.

0.8

States

Time
sin(z+1)
(t+2)

Fig. 2. Evolution of x with w(¢) =

Fig. 1 shows the state trajectories of the system
driven by the nonlinear optimal controller and by the
local controller. The initial state is (0.1,0,—0.1) and

w=0. As shown in the figure, the qualitative
behavior of two trajectories is similar since the initial
state is located around the origin. In the presence of
sin(f+1)
(1+2)°
controller robustly stabilizes the system, while the
linear controller cannot (for linear case, x(r)

the disturbance w(¢)= € L,, the nonlinear

diverges). Fig. 2 illustrates this result.
Example 2: Consider the 2-dimensional system

x1= ) +x+w, xp=u

where f; is already defined of the form (34), and

suppose a cost is given by J(u,w)=
Ljo [xlz +x§ o’ —25w2}dt. This example illus-

trates that even if the approach in [3] is applicable (for
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two dimensional system, C' is enough), the controller
given by this paper differs from that of [3].
Through a series of calculations, we obtain
P P2

182 1.06

p12 p22 106 178
(1 0]

L= ,
—a 1 [060 }
K 0' 1.1

A=l ! 8
0 3, 0 1.78

—0.60 1}

P=

-0.36 0.60

1.36 -0.60
—0.60 1

v |
I
1
S O
NS S—
|
]
1 '
-]
.O\ [
O
[ II—J|——""—;

}, g =0.135.

Controller of [3]: Let z =x. Select g al =115

and it follows ¢,=0z — f;. Let z, =x, “(11 After
: ‘11 2gm;
some computation, 1= 2] + M2y, == —=
e, Om >

2ﬁ2 h - — a_H 1 — —
ts, Where my(z)=-F-aty 51(82‘52) and
—2

ﬁz(z):z—( 2, 52)82 A possible choice of the

controller is u; = —(\/1+x*2 +x*)8222, N = x+212.

Proposed Controller: e=0.1 and
k, =0.02. Pick B=0.05, and define 511=zle*5/21,
for z >0, and vanishing otherwise. It holds that
1s of the form (35).

Choose

Selecting af{ =—o121 yields =0z —gz;. For
the second step, compute pf =F# + Fy2, and

7y =Hi + Hyz Wwhere

_ 8o~ 4y, — -\ — &gt
F1=— o + 9 == »
1 azl — —ai~ bz, ( 11 Kll) F2 oz,

. 1 - - = — 1 —2 -9
H1 ':_2“(8’281_5251)51» Hgiz—z(gz-bz)éiz.
_..H _H _ . . .
Py T hy Tk2ift T k2?2 in  which
k2 =Fo+H, and the optimal

controller is designed as u, =—(\/1+x2 + %0527,

2% . : :
y = 5'(222 + k22 K%l The trajectories starting at several

Therefore,

kn=F1tHyp

Ty
o

I

-5 -4 -3 -2 -1 0 1 2
1

Fig. 4. State trajectories, proposed controller (¢ = 0.1).

initial states are illustrated in Figs. 3 and 4 with
control inputs #; and u,, respectively. It is clearly seen
from these figures that two approaches are different
from each other although the parameters associated
with linear optimal controllers are identical. This
comes from different ways of designing high order
terms in virtual controllers.

5. CONCLUSIONS

The virtual controls are chosen to approximately
cancel the nonlinearities of a system with C' vector
fields at each recursive step, and a robust controller is
designed at the last step such that it meets the dual
goal, i.e., the local optimality and the global inverse
optlmahty Note that the nonlinearities cannot be
exactly canceled out because it might contain the C!
functions as assumed, and this is why the
approximation technique is used as an alternative
strategy. While applying proposed method, it is
desirable that the C' functions are approximated by
smooth functions as closely as possible, which can be
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done by reducing the design variable . The main
limitation of our approach is that the system needs to
be known exactly. Consideration of plant uncertainty
is a future research topic beyond the scope of this
paper.
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