• Title/Summary/Keyword: vector approximation

Search Result 186, Processing Time 0.044 seconds

Performance analysis of maximum likelihood detection for the spatial multiplexing system with multiple antennas (다중 안테나를 갖는 공간 다중화 시스템을 위한 maximum likelihood 검출기의 성능 분석)

  • Shin Myeongcheol;Song Young Seog;Kwon Dong-Seung;Seo Jeongtae;Lee Chungyong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.103-110
    • /
    • 2005
  • The performance of maximum likelihood(ML) detection for the given channel is analyzed in spatially multiplexed MIMO system. In order to obtain the vector symbol error rate, we define error vectors which represent the geometrical relation between lattice points. The properties of error vectors are analyzed to show that all lattice points in infinite lattice almost surely have four nearest neighbors after random channel transformation. Using this information and minimum distance obtained by the modified sphere decoding algorithm, we formulate the analytical performance of vector symbol error over the given channel. To verify the result, we simulate ML performance over various random channel which are classified into three categories: unitary channel, dense channel, and sparse channel. From the simulation results, it is verified that the derived analytical result gives a good approximation about the performance of ML detector over the all random MIMO channels.

Customer Classification System Using Incrementally Ensemble SVM (점진적 앙상블 SVM을 이용한 고객 분류 시스템)

  • Park, Sang-Ho;Lee, Jong-In;Park, Sun;Kang, Yun-Hee;Lee, Ju-Hong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.190-192
    • /
    • 2003
  • 소비자의 신용 대출 규모가 점차 증가하면서 기업에서 고객의 신용 등급에 의한 정확한 고객 분류를 필요로 하고 있다 이를 위해 판별 분석과 신경망의 역전파(BP: Back Propagation)를 이용한 고객 분류 시스템이 연구되었다. 그러나, 판별 분석을 사용한 방법은 불규칙한 신용 거래의 성향을 보이는 비정규 분포의 고객 데이터의 영향으로 여러 개의 판별 함수와 판별점이 존재하여 분류 정확도가 떨어지는 단점이 있다. 신경망을 이용한 방법은 불규칙한 신용 거래의 성향을 보이는 고객 데이터에 의해서, 지역 최소점(Local Minima)에 빠져 최대의 분류 정확률을 보이는 분류자를 얻지 못하는 경우가 발생할 수 있다. 본 논문에서는 이러한 기존 연구의 분류 정확률을 저하시키는 단점을 해결하기 위해 SVM(Support Vector Machine)을 사용하여 고객의 신용 등급을 분류하는 방법을 제안한다. SVM은 SV(Support Vector)의 수에 의해서 학습 성능이 좌우되므로, 불규칙한 거래 성향을 보이는 고객에 대해서도 높은 차원으로의 매핑을 통하여, 효과적으로 학습시킬 수 있어 분류의 정확도를 높일 수 있다 하지만, SVM은 근사화 알고리즘(Approximation Algorithms)을 이용하므로 분류 정확도가 이론적인 성능에 미치지 못한다. 따라서, 본 논문은 점진적 앙상블 SVM을 사용하여, 기존의 고객 분류 시스템의 문제점을 해결하고 실제적으로 SVM의 분류 정확률을 높인다. 실험 결과는 점진적 앙상블 SVM을 이용한 방법의 정확성이 기존의 방법보다 높다는 것을 보여준다.

  • PDF

Damage detection of plate-like structures using intelligent surrogate model

  • Torkzadeh, Peyman;Fathnejat, Hamed;Ghiasi, Ramin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1233-1250
    • /
    • 2016
  • Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.

Global Optimization Using Kriging Metamodel and DE algorithm (크리깅 메타모델과 미분진화 알고리듬을 이용한 전역최적설계)

  • Lee, Chang-Jin;Jung, Jae-Jun;Lee, Kwang-Ki;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.537-542
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on computer simulation. But defining exact model using computer simulation is too expensive and time consuming in the complicate systems. Thus, designers often use approximation models, which express the relation between design variables and response variables. These models are called metamodel. In this paper, we introduce one of the metamodel, named Kriging. This model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. This class of interpolating model has flexibility to model response data with multiple local extreme. By reason of this multi modality, we can't use any gradient-based optimization algorithm to find global extreme value of this model. Thus we have to introduce global optimization algorithm. To do this, we introduce DE(Differential Evolution). DE algorithm is developed by Ken Price and Rainer Storn, and it has recently proven to be an efficient method for optimizing real-valued multi-modal objective functions. This algorithm is similar to GA(Genetic Algorithm) in populating points, crossing over, and mutating. But it introduces vector concept in populating process. So it is very simple and easy to use. Finally, we show how we determine Kriging metamodel and find global extreme value through two mathematical examples.

  • PDF

A Study on Structural Intensity Measurement of Semi-infinite Beam (반무한보의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 1997
  • This paper investigated the practical use for measuring the structural intensity (power flow per width of cross section) in a uniform semi-infinite beam in flexural vibration. The structural intensity is obtained as a vector at a measurement point, One-dimensional structural intensity can be obtained from 4-point cross spectral measurement, or 2-point measurement on the assumption of far field. The measurement errors due to finite difference approximation and phase mismatch of accelerometers are examined. For precise measurements, it would be better to make the value of k$\delta$(wave number x space between accelerometers) between 0.5 and 1.0. Formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained from 2- and 4-point measurement performed at 200mm (near field) and 400mm (far field) apart from excitation point in random excitation. the results are compared with the theoretical values and measured values of input power spectrum in order to verify the accuracy of structural intensity method, 2-point method is suggested as the practical structural intensity method.

  • PDF

A cognitive model for forecasting progress of multiple disorders with time relationship

  • Kim, Soung-Hie;Park, Wonseek;Chae, In-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.505-510
    • /
    • 1996
  • Many diseases cause other diseases with strength of influences and time intervals. Prognostic and therapeutic assessments are the important part of clinical medicine as well as diagnostic assessments. In cases where a patient already has manufestations of multiple disorders (complications), progress forecasting and therapy decision by physicians without support tools are very dificult: physicians often say that "Once complications set in, the patient may die". Treating complications are difficult tasks for physicians, because they have to consider all of the complexities, possibilities and interactions between the diseases. The prediction of multiple disorders has many bundles that arise from such time-dependent interrelationships between diseases and nonlinear progress. This paper proposes a model based on time-dependent influences, which appropriately describes the progress of mulitple disorders, and gives some modificaitons for applying this model to medical domains: time-dependent influence matrix manifestation vector, therapy efficacy matrix, S-shaped curve approximation, definitions of which are provided. This research proposes an algorithm for forecasting the state of each disease on the time horizon and for evaluation of therapy alternatives with not toy example, but real patient history of multiple disorders.disorders.

  • PDF

Steering Angle Error Compensation Algorithm Appropriate for Rapidly Moving Sources (빠른 속도로 기동하는 표적 환경에 적합한 조향각 오차 보정기법)

  • 박규태;박도현;이정훈;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.206-213
    • /
    • 2004
  • This paper presents a steering angle error compensation (SAEC) algorithm that is appropriate for rapidly moving sources. The Proposed algorithm utilizes a modal covariance matrix from multiple frequency components instead of the multiple snapshots in a narrowband SAEC, and estimates the steering error by maximizing the wideband WVDR output power using a first-order Taylor series approximation of the modal steering vector in terms of the steering error. As such, the steering error can be compensated with short observation times. Several simulations using artificial and sea trial data are used to demonstrate the Performance of the proposed algorithm.

A Study on the Radiation Characteristics of the Conical Corrugated Feed Horn using the Gaussian Beam Mode (가우시안 빔 모드에 의한 원뿔형 컬러게이트 급전 혼의 복사특성에 관한 연구)

  • 장대석;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.515-522
    • /
    • 1994
  • The radiation characteristics of the conical corrugated feed horn are analyzed by the Gaussian beam mode theory. the electric field over the aperture can be expanded in terms of a set of Gaussian-Laguerre modes. It is proved that these modes are the solutions of the wave epuations for the paraxial approximation. A method, using the sum of the mode expansion coefficients instead of calculation only the fundamental mode, is presented in order to reduce the radiation pattern error. For illustrative examples, the radiation patterns of the corrugated horn antenna operting over C, Ku, and mm-wave band are calculated. Our results agree well with the results obtained by the vector potential method over each band, and also agree well with the measured value at 6.175GHz.

  • PDF

Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석)

  • Jung, Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.

Computations of Natural Convection Flow Using Hermite Stream Function Method (Hermite 유동함수법에 의한 자연대류 유동 계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 2009
  • This paper is a continuation of the recent development on Hermite-based divergence free element method and deals with a non-isothermal fluid flow thru the buoyancy driven flow in a square enclosure with temperature difference across the two sides. The basis functions for the velocity field consist of the Hermite function and its curl while the basis functions for the temperature field consists of the Hermite function and its gradients. Hence, the number of degrees of freedom at a node becomes 6, which are the stream function, two velocities, the temperature and its x and y derivatives. This paper presents numerical results for Ra = 105, and compares with those from a stabilized finite element method developed by Illinca et al. (2000). The comparison has been done on 32 by 32 uniform elements and the degree of approximation of elements used for the stabilized finite element are linear (Deg. 1) and quadratic (Deg. 2). The numerical results from both methods show well agreements with those of De vahl Davi (1983).