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( Performance analysis of maximum likelihood detection
for the spatial multiplexing system with multiple antennas )
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Abstract

The performance of maximum likelihood(ML) detection for the given channel is analyzed in spatially multiplexed MIMO
system. In order to obtain the vector symbol error rate, we define error vectors which represent the geometrical relation
between lattice points. The properties of error vectors are analyzed to show that all lattice points in infinite lattice almost
surely have four nearest neighbors after random channel transformation. Using this information and minimum distance
obtained by the modified sphere decoding algorithm, we formulate the analytical performance of vector symbol error over
the given channel. To verify the result, we simulate ML performance over various random channel which are classified
into three categories: unitary channel, dense channel, and sparse channel. From the simulation results, it is verified that
the derived analytical result gives a good approximation about the performance of ML detector over the all random MIMO
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channels.
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I. Introduction

The multiple-antenna systems have a great
attention, mainly due to its promising performance

compared to conventional single-antenna systems.
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The previous studies in information theory have
that a multi-output(MIMO)
system is able to support enormous capacities,

shown multi-input
provided that the multipath scattering of a wireless
channel is exploited with appropriate space-time
sighal processing techniquesmm.

To achieve these advantages, various space-time
modulation and detection techniques have been
proposedBH&. Spatial multiplexing, which is one of
the well-known space-time modulation techniques,
can provide optimal capacity by multiplexing the
multiple
transmitting each substream on a different antenna

incoming data into substreams  and
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¥ The substreams can be separated at the receiver
by means of various detection techniques including
zero—forcing(ZF), minimum mean square error
(MMSE), vertical Bell laboratories layered space
time(V-BLAST), and maximum likelihood(ML)
detections ", Though ZF, MMSE and V-BLAST
need reasonable complexity to implement, they can
not enjoy the full diversity provided by multiple
receivers’”. Since the ML detector searches transmit
vector symhol over the set of all candidates, it
guarantees of
minimizing the overall error probability and obtains

optimal performance in terms
full receive diversity. However, extremely -high
complexity required in implementing it, precludes its
use in practical MIMO systems. To make its use
possible, the ML detection algorithms with reduced
complexity have been proposed, such as sphere
decoding algorithm and K-best algorithm®®,

The performance of ML detector has been analyzed
in the several literatures’™ "2, In [9], the union bound
of ML performance for quadrature amplitude
modulated QAM) MIMO  systems derived.
However, it gives a.loose union bound. More tight
bounds have been derived for ML detection in [10]

and [11] with considering the effect of channel

was

estimation error. For the performances in those
literatures, they considered the -~ averaged  error
probability with respect to Rayleigh MIMO channels.
Thus these results are not of use for closed loop
MIMO' techniques, - such as adaptive modulationm],
[14], quantized beamforming
, in which the transmitter requires the error
probability for the current channel realizations. In
[12], the analytical error probability for the given
channel was derived. However, the results can not be

antenna subset selection
[15]

readily expressed in closed form.

In this paper, we derive the analytical performance
of ML detection for the given channel. To analyze
error performance of ML, we ~define error vector
which represents the geometrical relation between the
lattice points after channel transformation, and derive
By taking
advantage of this information, we formulate the
vector symbol error rate performance. In. order to

the properties of the error vector.
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make out our results, we classify the random MIMO
channels into three qategoriesl unitary channel, dense
channel, sparse and . perform
Monte-Carlo simulations over these channels. From

and channel,
the results in the sequel, we can declare that the
analytical performance well ~ the
performance of ML for the given channel.

approximates

IO. System overview

We consider a MIMO system with- M, transmit
and Mj receive antennas, where the transmitted
symbols are assumed to be independent in time as
well as space, so that the transmit symbol vector
written as s consists of M; QAM symbols. In this
paper, we focus on the case in which M;<M; to

avoid rank deficient condition and assume that
E{ss®} = M_lT Iy, for unit transmit power constraint,

( ) denotes
conjugate transposition, and I, is MM identity

where E{-} denotes expectation,

matrix. Suppose that the bandwidth is much smaller
than the coherent bandwidth of channel so that the
discrete-time equivalent channel can be modeled as
an MpM; matrix H. Assume that the channel is
spatially uncorrelated, and. the element of channel
matrix H is drawn from complex Gaussian random
variable with CM0,1). The received vector added
with spatially uncorrelated noise can be written as
y= Hs+ n, where = is the complex Gaussian noise
vector whose entry is distributed according to
CMO, N,). We will define signal to noise ratio(SNR)
as transmit power to noise power ratio, that is
o=1/N,.

To obtain an equivalent real lattice representation
of this MIMO system, we transform the complex
equation into real matrix equation r= Mx-+ m, Where

r=[Rel v} I yTNT  x=[Rel s I s 7,

w=[Rel ") bo 7)), and =R —Iml 1),

The real transmit vector x has pulse amplitude
modulation(PAM) signal for the #&h element;

xe U= {du=2%—1-K, k=1,2,~ K} 1)
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where K=2 %2 and /2 means the number of bits
to be loaded at the real or imaginary component of
QAM symbol. Since the entries of M and w are the
real and imaginary elements of H and = they are
distributed according to M0,1/2) and N0, N,/2),
respectively.

As the channel is assumed to be estimated
accurately using training symbols, we assume in the
sequel that the channel is known at the receiver.
The receiver determines the transmitted vector =x
with the knowledge of the channel matrix M and
received vector » by ML detection criterion, which

can be written as k= arfg‘)‘[n | Mx—7|? where

I - I denotes vector norm, argmin returns global

minimizer, and x=U>" is the whole set of possible
transmit vectors. Though the ML detection provides
optimal solution, the complexity of it is prohibitively
extreme. To relieve this burden in real application,
we will use the sphere decoding algorithm for ML
[6]. This algorithm can be also used to obtain a
minimum  distance between the lattice points
transformed by channel and the error vector, which
indicates the direction of nearest neighbors. The
squared d.;, is defined by
min
X,, X,€x, X,¥F x,

d2min " M( X,- xb) " : (2)

and the error vector corresponding to d,, is

defined by e= x,— x, where =x, and =x, are the

nearest neighbors in x after channel transformation.

III. Vector symbol error rate for the given
channel

To derive vector symbol error rate, we first
consider pair wise error probability P{ x;— x,| M}
which is the probability of confusing x; with x;,
when x; is transmitted through the channel M and

these are the only two hypotheses, can be written as
[12]

I d;l
2V N,/2

Pl x— x].|u}=Q( | M( x,— x) [ )

2V N,/2

o

&)

(%D
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where d; means the distance between x; and x;
in the transformed domain.

The error probability P ,,_ , , for the given x;
and M can be approximated by considering the union
of error event to all the other vectors x;,Vj+i
Further, in high SNR region, noise variance is so
small that the error happens among the nearest
neighbors more dominantly, so that we can obtain
simple approximation of error rate, which becomes

tight as SNR increasesm],

d min )

N3 4)

de: z,,Mz NeiQ( 2

where Ne; is the number of nearest neighbors of

x,. Define the nearest neighbor as a neighbor which
is away from x; by d.;,. Since d,,is determined
in global set x as given in (2), it does not depend on
A

The total vector symbol error probability can be
obtained as follow by conditioning all possible symbol
vectors, which are assumed to occur equally.

)
d min
N /2
where N is the number of the total elements in x.
As shown in (5), in order to obtain approximated

N
error rate, d,;, and ZlNe,» for the given channel M

should be should be evaluated first. While d,, can
be easily obtained by using the modified sphere
decoding algorithm, the number of nearest neighbors
for all vector symbols needs much effort because the
neighbors of each vector symbol should be identified.
Hence, we need a method to obtain the sum of
nearest neighbor numbers efficiently. Fortunately, the
error vector defined in the previous section provides
a clue for it.

1. error vectors

Since, as defined in section II, the error vector
indicates the direction of the nearest neighbor, we
can enumerate the number of neighbor for the given
error vector by investigating the properties of the
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error vector.
Lemma 1 : If the error vector e has minimum

distance, then e has also minimum distance. The
polarity of error vector dose not affect on the
minimum distance.

Proof : &y = Mel’=| M(—e)|”
Lemma 2 : let e=[ e;- e,], where
upper half vector of e and

e,r is the
e,r is the lower half
one. If the ertor vector e has minimum distance,
then e,=[— e, ;-] has also minimum distance.
Proof . Let

imaginary part of channel matrix H, respectively.

H, and H,; are real and

Assuming e=[ e,r e,r] is error vector, the squared

minimum distance is given by

| Mel® = | Hee,— H; e 2'12' | Hye,+ Hg e, "2 ,
=] - HR‘;Z_ Hie | "+ | — Hye,+ Hpe |
= Me,|

(6)

From (6), we can see that e, is also error vector.

Lemma 3 : There are almost surely four error
vectors e, e, —e and —e, in x after transformed
by random channel M.

4 Proof  Let e=[ e e,] and e'¥[ e,: e,:] are
error . vectors. Their squared norm after channel
transform should be identical, that is,

| Mell> = | Hye - Hlezl|;+n Hiei+ Hype,|®
= " Hy e;— H; 34H + " H;e;+ Hy e " z (7)
=| Me}?

Since Hi and H; are randomly generated,

H,+ H, with probability one. In order to satisfy
equality, there are only four possible choices for e:
e, e, —e and - e, almost surely. Although the

ZH =5 NAEE 948 maximum likelihood AE7|9 Ms 24

channel condition to induce more error vector than

four of them may happen(eg., unitary channel), the
probability of this event is almost zero due to the
randomness of channel.

According to Lemma 3, we can certainly say that
there exist four error vectors which we will call joint
error vectors in the sequel. Since each error vector
represents the direction of the nearest neighbor, we

(952)
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can infer that each lattice point has. four nearest
neighbors, and figure out where the nearest one
exists from these information. Consider a symbol

vector x; and error vector e induced by random

channel. x; has four neighbors; @ x;+e,~ x;+ e,

x,—e and x;— e,

Due to the property of error vectors, all lattice
points transformed by the random channel have
almost surely four neighbors in infinite lattice.
However, we consider the lattice points only in %,
the finite lattice. In finite lattice structure, the number
of neighbor is not constant, but variable with respect
to the position of lattice point. For extreme example,
let =x,; be lattice point located on the surface of x
Then, the number of the ~nearest neighbors for this
point may be less than four. This is because some of
the nearest neighbors might be out of %, they are

not the nearest neighbors any more.

2. The sum of nearest neighbor numbers

As we know from (5), the sum of nearest neighbor
nurnbers should be calculated to obtain vector symbol
error rate. However, since Ne; is variant with
respect to the position of lattice point, enumerating it
for all i is extremely difficult. As a matter of fact,
we need the sum- of nearest neighbor numbers
instead of individual Ne, Therefore, we propose a
systematic approach to obtain = the sum .of nearest
neighbor numbers.

(1) One dimensional case

Let the error vector be. -e=2d where d is integer
such that =—K+1<d<K-1. The error
transfers the lattice points in x(= U) to error region
U,, where U,={uju,+2d, usU}. Let us define set
of the nearest neighbors as U,=UNU,.

Lemma 4 The nearest neighbor  number
introduced by the error vector is equivalent to the
number of elements in the set of the nearest
neighbors, that is, Ne( e)% #(U,), where n(+) is the

vector

number of the elements in the given set.
Prodf : If the lattice points U is transferred by
2d, they become the elements in U, However, since
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the lattice points of consideration are restricted in U,
the lattice points in U, can be nearest neighbors.
Thus, the number of elements in U, is equivalent to

nearest neighbor number.

(2) Multi—dimensional case

Let the #h layer lattice be U, and the ith layer
error vector be e, The set of the nearest neighbors
for Ith layer can be obtained like one dimensional
case as U, ,=UNU,, where U,, is the error
region for the th layer. From Lemma 4, the nearest
neighbor number for the #h layer can be given by
Ne( e)=n(U, ).

Lemma 5

introduced by e is given by

The nearest neighbor number

Ne( &)= T Ne( &)= T1,n(U,.) (®)

where L=2M is the length of lattice vector.

Proof : Since the multi-dimensional lattice is
formed by Cartesian product of U, the error event
at each layer is independent to each other. Therefore,
the nearest neighbor number can be obtained by
product of each layer’'s neighbor number.

Lemma 6 . Joint error vectors have identical
nearest neighbor number:

Ne( e) = Ne(— e) = Ne( e,)=Ne(— e,)

Proof : 1) From the symmetric structure of U,

the polarity of e, does not affect on the nearest

neighbor numbers Ne( e). 2) The permutation of
error vector does not affect on the nearest neighbor
numbers. This is because the permutation changes
the order of product and the product operation is
commutative.

From 1), Ne(e)=Ne(—e), Ne( e,)=Ne(— e,) are
verified. From 1) and 2), Ne(e)=Ne( e, is also
verified. [J

Lemma 5 and Lemyna 6 provide insight into the
sum of the nearest neighbor numbers. In lattice
transformed by random channel, there are four error
vectors(joint error vector) -almost surely. The nearest
neighbor number introduced by each error vector can
be obtained by Lemwna 5. Since the error to the

(953)
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direction of each error vector is mutually exclusive,
from Lemma 6, the sum of the nearest neighbor

numbers can be obtained by ,ZNlNef=4Ne( e).

By substituting the sum of the nearest neighbor
numbers into (5), the vector symbol error rate can be

given by
p,  ~-ANele) Q(  ny ) 9
4 M N WN,J2

II1. Performance analysis

1. Channel classification

We classify the MIMO random channel into three
categories: unitary channel, dense channel, and sparse
channel. In the case of the unitary channel, the
H"H=1. Since the
unitary channel just rotates the lattice points in g,

channel matrix is unitary:

the regular structure of lattice is preserved even after
the channel transformation, so that ML performance
over this channel does not affected by the channel.
However, this favor channel hardly happens in real
random channel environments, so we will consider
this channel just to verify our works. Actually, the
real random channel can be classified to the dense
and the sparse channels. Let us call a channel as
‘dense’, when the next nearest neighbors are close to

vector symbol error rate{(VSER)
-
o,
3

- O - QPSK-analytical
7 | —— 16QAM-umerical
i+ O - 16QAM-analytical
| —A— 640AM-numerical

!
15

[} 5 10 25
SNR(dB)
a8 1. fuUEal zdoiMe Ms Hlm
Fig. 1. Performance comparisons over the unitary

channel.
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the nearest neighbors, and call a channel as ‘sparse’,
when the next nearest neighbors are sufficiently far
away from the nearest neighbors. Let us define
channel density as D.= d&4/d%,,, where d, denotes
the distance from the given lattice point to the next
nearest neighbor. We will define the dense channel as
the channel with 1<D.<2 and the sparse channel as
the channel with D.>2. We have found the
distribution of the channel density for the random
channel by exhaustive search. From this simulation,
we can see that the dense channel occurs with
probability about 06544 and the sparse channel with
probability about 0.3456.

2. Simulation results

We assumed a MIMO system in which transmitter
and receiver are equipped with 2 antennas and the
MIMO channel is spatially uncorrelated. The results
of the analytic performance
performance were compared in terms of averaged
transmit SNR for the given random channel. We used
uncoded QPSK, 16QAM, and 64QAM constellations
for the symbol set.

and numerical

(1) The unitary channel
When the MIMO channel is the unitary matrix, the
regular structure of lattice in x is preserved after the

,,,,,,,,,,,,,,,,
—————————

- O - QPSKenalytical ‘
f| —@—16QAM-numerical | 1 X . ©
- O - 160AManalytical | ',
—A— g40AM-uUmerical | -
k - A - CAM-anatytical |

T3

3 10
SNR(dB)

33 2. Dense dMdoliMel Msuim
Fig. 2. Performance comparisons over
channel.

the dense
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channel transformation, so that the error vectors are
not changed by the chamnel transformation. Assuming
2X2 unitary MIMO channel, there are eight joint
error vectors: +[2 00017, [0 20 017, =[00 2017,
+{0 0 0 2]17. Thus, (9) should be modified by
changing the number of the joint error vectors 4 into
8 (=4M,). The performance of ML detector over the
unitary channel is given in Fig. 1, where the required
SNR to get 10 ~° VSER is around 10.7dB for QPSK,
13.1dB for 16QAM, and 24.5dB for 64QAM. The SNR
gabs between modulation types come from the
difference between d ., of each. From this result,
we clearly demonstrate that the (9) is very good
analytic approximation of VSER performance for the
ML detection over the unitary channels.

and

(2) The dense channel and the sparse channel

Though the analytic performance for the unitary
channel gives a good approximation for ML detector,
this channel hardly happens in real environment. To
show the validity of our results in the real random
channel, we performed simulations over the dense
channel and the sparse channel which contain the
case of all random channels. For the dense channel,
we generated a random channel whose - channel
density is 1.002.

Fig. 2 shows the analytical and the numerical
performances over the dense channel. The SNR gaps
with respect to 10 ~% VSER between analytical and
numerical results are less than 1dB and decrease
as SNR increases. In the dense channel, the next
nearest neighbors are close to the nearest neighbors,
so that they may act as the nearest neighbors. In
low SNR region, since the noise variance is larger
than the squared minimum distance, the error occurs
into the next nearest neighbors as well as the nearest
neighbor. However, we did not take into account the
errors to the next neighbor in our approximation.
This is reason why the analytical result is relatively
loose in low SNR region.. On the contrary, as SNR
increases, the error events happen dominantly into
the directions of the nearest neighbors, the analytical
result is tightened to numerical results as  we
expected. Note that since channel considered in this
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[—8—apsKknumerical

Fl- O - QPSKanalytical
~~ 16QAM-numerical |
- O - 16QAMenalytical | "\
—A— GAQAM-numerical |
iyca |

—

5 T 10

1<5 i)
SNR{dB)
a8 3. Sparse dMdofirel Msd|w
Fig. 3. Performance comparisons over
channel.

the sparse

figure was severely dense, this analytical results in
this channel might be looser than those in any other
moderate dense channel.

We also evaluated the numerical performance to
compare with analytical performance for the sparse
channel. We generated a sparse channel whose
density is 2. Fig. 3 gives the analytical and the
numerical performance over the sparse channel. With
compared to the results in Fig. 2, the analytical
performance converges more quickly to the numerical
performance. This comes from that since the next
nearest neighbors are further away from transmit
vector than the nearest ones, the error events tend to
happen dominantly into the nearest neighbors even in
low SNR region.

From these results, we can declare that our works
provide a desirable measure for the performance of
ML detection over the various random MIMO
channels.

1. Conclusion

In this paper, we have provided the analytical
performance of ML detection for the given random
MIMO channel. The derived analytical performance
has been verified in various random channels: the
unitary channel, the dense channel, and the sparse
channel, which represent all types of random

s
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channels. We have shown by simulations that our
analytical result can approximate the numerical
performance in the unitary channel and in the sparse
channel quite well. In the dense channel, though the
analytical performance has the difference of less than
1dB with compared to the numerical result at 10 3
VSER, it becomes tight to the numerical results as
SNR increases. As a result, we have verified that our
results provide a good approximation for the
performance of ML detection in random MIMO
chamnels. The analytical performance we have derived
can be of use for various applications using ML
detector, such as adaptive modulation with ML
detection, antenna subset selection and quantized
multi-stream beamforming, etc.
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