• Title/Summary/Keyword: variational evolution inequalities

Search Result 4, Processing Time 0.018 seconds

CONTROLLABILITY FOR NONLINEAR VARIATIONAL EVOLUTION INEQUALITIES

  • Park, Jong-Yeoul;Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.881-891
    • /
    • 2012
  • In this paper we investigate the approximate controllability for the following nonlinear functional differential control problem: $$x^{\prime}(t)+Ax(t)+{\partial}{\phi}(x(t)){\ni}f(t,x(t))+h(t)$$ which is governed by the variational inequality problem with nonlinear terms.

STUDY OF DYNAMICAL MODEL FOR PIEZOELECTRIC CYLINDER IN FRICTIONAL ANTIPLANE CONTACT PROBLEM

  • S. MEDJERAB;A. AISSAOUI;M. DALAH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.487-510
    • /
    • 2023
  • We propose a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material is described with a linearly electro-viscoelastic constitutive law with long term memory. The mechanical process is dynamic and the electrical conductivity coefficient depends on the total slip rate, the friction is modeled with Tresca's law which the friction bound depends on the total slip rate with taking into account the electrical conductivity of the foundation both. The main results of this paper concern the existence and uniqueness of the weak solution of the model; the proof is based on results for second order evolution variational inequalities with a time-dependent hemivariational inequality in Banach spaces.

VARIATIONAL ANALYSIS OF AN ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION

  • CHOUGUI, NADHIR;DRABLA, SALAH;HEMICI, NACERDINNE
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.161-185
    • /
    • 2016
  • We consider a mathematical model which describes the quasistatic frictional contact between a piezoelectric body and an electrically conductive obstacle, the so-called foundation. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with Signorini's conditions and a version of Coulomb's law of dry friction in which the adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation for the model, in the form of a system for the displacements, the electric potential and the adhesion. Under a smallness assumption which involves only the electrical data of the problem, we prove the existence of a unique weak solution of the model. The proof is based on arguments of time-dependent quasi-variational inequalities, differential equations and Banach's fixed point theorem.