DOI QR코드

DOI QR Code

STUDY OF DYNAMICAL MODEL FOR PIEZOELECTRIC CYLINDER IN FRICTIONAL ANTIPLANE CONTACT PROBLEM

  • S. MEDJERAB (Department of Mathematics, Laboratory of Analysis, Optimization and Treatment of information (LAOTI), Faculty of Exact Sciences and Informatic, Mohammed Seddik Ben Yahia University) ;
  • A. AISSAOUI (Department of Mathematics, Laboratory of Operator Theory and PDE, Foundations and Applications, Faculty of Exact Sciences, University of El Oued) ;
  • M. DALAH (Department of Mathematics, Faculty of Exact Sciences, Freres Mentouri Constantine University)
  • Received : 2021.06.16
  • Accepted : 2023.05.04
  • Published : 2023.05.30

Abstract

We propose a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The behavior of the material is described with a linearly electro-viscoelastic constitutive law with long term memory. The mechanical process is dynamic and the electrical conductivity coefficient depends on the total slip rate, the friction is modeled with Tresca's law which the friction bound depends on the total slip rate with taking into account the electrical conductivity of the foundation both. The main results of this paper concern the existence and uniqueness of the weak solution of the model; the proof is based on results for second order evolution variational inequalities with a time-dependent hemivariational inequality in Banach spaces.

Keywords

Acknowledgement

We would like to thank the anonymous reviewers at Research Ethics and two anonymous reviewers at Theoria for commenting on earlier versions of this paper. For discussions on the topic and comments on the paper, thanks to participants of the practical mathematics working group at the University of Jijel, Algeria deserves our thanks for proofreading the paper. As always, any remaining errors are our own.

References

  1. A. Borrelli, C.O. Horgan, M.C. Patria, Saint-Venant's principle for antiplane shear deformations of linear piezoelectic materials, SIAM J. Appl. Math. 62 (2002), 2027-2044. https://doi.org/10.1137/S0036139901392506
  2. H. Brezis, Problemes unilateraux, J. Math. Pures Appl. 51 (1972), 1-168.
  3. M. Campillo, I.R. Ionescu, Initiation of antiplane shear instability under slip dependent friction, Journal of Geophysical Research 102 B9 (1997), 363-371. https://doi.org/10.1029/96JA03106
  4. A. Derbazi, M. Dalah, A. Megrous, The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory, Applications of Mathematics 61 (2016), 339-358. https://doi.org/10.1007/s10492-016-0135-9
  5. G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
  6. A.C. Eringen, G.A. Maugin, Electrodynamics of Continua, Springer-Verlag, New York, 1989.
  7. K. Fernane, M. Dalah, A. Ayadi, Existence and uniqueness solution of a quasistatic electro-elastic antiplane contact problem with Tresca friction law, Applied Sciences 14 (2012), 45-59.
  8. W. Han, M. Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems, SIAM J. Numer. Anal. 38 (2001), 556-579. https://doi.org/10.1137/S0036142998347309
  9. W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, Americal Mathematical Society, Providence, RI-International Press, Somerville, MA, 30, 2002.
  10. W. Han, M. Sofonea, Time-dependent variational inequalities for viscoelastic contact problems, Journal of Computational and Applied Mathematics 136 (2001), 369-387. https://doi.org/10.1016/S0377-0427(00)00627-0
  11. C.O. Horgan, Anti-plane shear deformation in linear and nonlinear solid mechanics, SIAM Rev. 37 (1995), 53-81.
  12. C.O. Horgan, K.L. Miller, Anti-plane shear deformation for homogeneous and inhomogeneous anisotropic linearly elastic solids, J. Appl. Mech. 61 (1994), 23-29. https://doi.org/10.1115/1.2901416
  13. T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990.
  14. Z. Lerguet, M. Shillor, M. Sofonea, A frictional contact problem for an electro-viscoelastic body, Electronic Journal of Differential Equations 170 (2007), 1-16.
  15. F. Maceri, P. Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support, Math. Comp. Modelling 28 (1998), 19-28. https://doi.org/10.1016/S0895-7177(98)00105-8
  16. A. Matei, T.V. Hoarau-Mantel, 'emes antiplans de contact avec frottement pour des mat'eriaux visco'elastiques 'a m'emoire longue, Annals of University of Craiova, Math. Comp. Sci. Ser. 32 (2005), 200-206.
  17. S. Mig'orski, A. Ochal, M. Sofonea, A dynamic frictional contact problem for piezoelectric materials, J. Math. Anal. Appl. 361 (2010), 161-176. https://doi.org/10.1016/j.jmaa.2009.09.004
  18. S. Mig'orski, A. Ochal, M. Sofonea, Analysis of a dynamic contact problem for electro-viscoelastic cylinders, Nonlinear Analysis 73 (2010), 1221-1238. https://doi.org/10.1016/j.na.2010.04.046
  19. C. Niculescu, A. Matei, M. Sofonea, An Antiplane Contact Problem for Viscoelastic Materials with Long-Term Memory, Math. Model. Anal. 11 (2006), 213-228. https://doi.org/10.3846/13926292.2006.9637314
  20. V.Z. Patron, B.A. Kudryavtsev, Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, Gordon and Breach, London, 1988.
  21. M. Shillor, M. Sofonea, J.J. Telega, Models and Analysis of Quasistatic Contact, Lect. Notes Phys., 655, Springer, Berlin Heidelberg, 2004.
  22. M. Sofonea, M. Dalah, A. Ayadi, Analysis of an anti plane electro-elastic contact problem, Adv. Math. Sci. Appl. 17 (2007), 385-400.
  23. M. Sofonea, El H. Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction, Mathematical Modelling and Analysis 9 (2004), 229-242. https://doi.org/10.3846/13926292.2004.9637256
  24. M. Sofonea, El H. Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body, Adv. Math. Sci. Appl. 14 (2004), 613-631.
  25. M. Sofonea, A. Matei, Mathematical Models in Contact Mechanics, United States of America By Cambridge University Press CB2 8RU, 398, UK, 2012.
  26. M. Sofonea, A. Matei, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics, 18, Springer, New York, 2009.