• 제목/요약/키워드: variance component estimation

검색결과 35건 처리시간 0.019초

Methods and Techniques for Variance Component Estimation in Animal Breeding - Review -

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권3호
    • /
    • pp.413-422
    • /
    • 2000
  • In the class of models which include random effects, the variance component estimates are important to obtain accurate predictors and estimators. Variance component estimation is straightforward for balanced data but not for unbalanced data. Since orthogonality among factors is absent in unbalanced data, various methods for variance component estimation are available. REML estimation is the most widely used method in animal breeding because of its attractive statistical properties. Recently, Bayesian approach became feasible through Markov Chain Monte Carlo methods with increasingly powerful computers. Furthermore, advances in variance component estimation with complicated models such as generalized linear mixed models enabled animal breeders to analyze non-normal data.

ONNEGATIVE MINIMUM BIASED ESTIMATION IN VARIANCE COMPONENT MODELS

  • Lee, Jong-Hoo
    • East Asian mathematical journal
    • /
    • 제5권1호
    • /
    • pp.95-110
    • /
    • 1989
  • In a general variance component model, nonnegative quadratic estimators of the components of variance are considered which are invariant with respect to mean value translaion and have minimum bias (analogously to estimation theory of mean value parameters). Here the minimum is taken over an appropriate cone of positive semidefinite matrices, after having made a reduction by invariance. Among these estimators, which always exist the one of minimum norm is characterized. This characterization is achieved by systems of necessary and sufficient condition, and by a cone restricted pseudoinverse. In models where the decomposing covariance matrices span a commutative quadratic subspace, a representation of the considered estimator is derived that requires merely to solve an ordinary convex quadratic optimization problem. As an example, we present the two way nested classification random model. An unbiased estimator is derived for the mean squared error of any unbiased or biased estimator that is expressible as a linear combination of independent sums of squares. Further, it is shown that, for the classical balanced variance component models, this estimator is the best invariant unbiased estimator, for the variance of the ANOVA estimator and for the mean squared error of the nonnegative minimum biased estimator. As an example, the balanced two way nested classification model with ramdom effects if considered.

  • PDF

퍼지자료에 대한 분산성분 추정 (Estimation variance components for fuzzy data)

  • Kang, Man-Ki;Park, Gyu-Tag
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.281-285
    • /
    • 2002
  • The observation fuzzy data in random effect and balanced designs for one way classification by using a the matrix formulation, we can estimate the fuzzy variance components for the ozone depletion example and test by the agreement index.

  • PDF

Nonnegative variance component estimation for mixed-effects models

  • Choi, Jaesung
    • Communications for Statistical Applications and Methods
    • /
    • 제27권5호
    • /
    • pp.523-533
    • /
    • 2020
  • This paper suggests three available methods for finding nonnegative estimates of variance components of the random effects in mixed models. The three proposed methods based on the concepts of projections are called projection method I, II, and III. Each method derives sums of squares uniquely based on its own method of projections. All the sums of squares in quadratic forms are calculated as the squared lengths of projections of an observation vector; therefore, there is discussion on the decomposition of the observation vector into the sum of orthogonal projections for establishing a projection model. The projection model in matrix form is constructed by ascertaining the orthogonal projections defined on vector subspaces. Nonnegative estimates are then obtained by the projection model where all the coefficient matrices of the effects in the model are orthogonal to each other. Each method provides its own system of linear equations in a different way for the estimation of variance components; however, the estimates are given as the same regardless of the methods, whichever is used. Hartley's synthesis is used as a method for finding the coefficients of variance components.

Estimation for a bivariate survival model based on exponential distributions with a location parameter

  • Hong, Yeon Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권4호
    • /
    • pp.921-929
    • /
    • 2014
  • A bivariate exponential distribution with a location parameter is proposed as a model for a two-component shared load system with a guarantee time. Some statistical properties of the proposed model are investigated. The maximum likelihood estimators and uniformly minimum variance unbiased estimators of the parameters, mean time to failure, and the reliability function of system are obtained with unknown guarantee time. Simulation studies are given to illustrate the results.

다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구 (A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis)

  • 김태철;정하우
    • 한국농공학회지
    • /
    • 제22권3호
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

Reliability Estimation for a Shared-Load System Based on Freund Model

  • Hong, Yeon-Woong;Lee, Jae-Man;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 1995
  • This paper considers the reliability estimation of a two-component shared-load system based on Freund model. Maximum likelihood estimator, order restricted maximum likelihood estimator and uniformly minimum variance unbiased estimator of the reliability function for the system are obtained. Performance of three estimators for moderate sample sizes is studied by simulation.

  • PDF

환자-치과의사 관계(PDI Patient Dentist Interaction) 평가의 오차원 분석: 일반화가능도 이론 적용 (Analysis of Error Source in Subjective Evaluation on Patient Dentist Interaction : Application of Generalizability Theory)

  • 김주아;조리라
    • 대한치과의사협회지
    • /
    • 제57권8호
    • /
    • pp.448-455
    • /
    • 2019
  • This study aims to apply the Generalizability Theory (G-theory) for estimation of reliability of evaluation scores between raters on Patient Dentist Interaction. Selecting a number of raters as multiple error sources, this study was analyzed the error sources caused by relative magnitude of error variances of interaction between the factors and proceeded with D-study based on the results of G-study for optimal determination of measurement condition. The estimated outcomes of variance component for accuracy among the Patient Dentist Interaction evaluation with G-theory showed that impact of error was the biggest influence factor in students. The second influence was the item effect, and the rater effect was relatively small. The Generalizability coefficients for case1 and case2 which were estimated through the D- study were calculated relatively low.

  • PDF

불균형 선형혼합모형에서 추정량 (A Comparison of Estimation in an Unbalanced Linear Mixed Model)

  • 송석헌;정병철
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.337-354
    • /
    • 2002
  • 본 논문에서는 오차성분이 계열상관을 갖는 불균형 랜덤모형에서 분산성분의 추정방법에 대하여 연구하였다. 분산성분에 대한 추정량으로 조건부 ANOVA(cANOVA), ML및 REML추정량등을 유도하였으며, 계열상관값과 불균형의 정도에 따른 추정량의 변동성을 추정량의 분위수를 이용하는 EQDGs플롯을 이용하여 비교하였다. 모의실험결과 cANOVA추정방법은 불균형의 정도에는 추정량값이 크게 영향을 받지 않는 것으로 나타났으나 계열상관값의 증가에 따라서는 변동성을 보이고 있다. 불균형의 정도와 계열상관값을 동시에 고려하는 경우에는 ML추정방법이 cANOVA, REML추정방법보다 변동성이 안정적으로 나타났다.

Dynamic state estimation for identifying earthquake support motions in instrumented structures

  • Radhika, B.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • 제5권3호
    • /
    • pp.359-378
    • /
    • 2013
  • The problem of identification of multi-component and (or) spatially varying earthquake support motions based on measured responses in instrumented structures is considered. The governing equations of motion are cast in the state space form and a time domain solution to the input identification problem is developed based on the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also explored. Illustrative examples include identification of multi-component and spatially varying support motions in linear/nonlinear structures.