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ABSTRACT

In a general variance component model, nonnegative quadratic 
estimators of the components of variance are considered which are 
invariant with respect to mean value translaion and have minimum 
bias (arak磨os어y to estimation^ theory of mean value parame^rs). 
Here the minimum is taken over an appropriate cone of positive 
semidefinite matrices, after having made a reduction by invariance.

Among these estimators, which always exist the one of minimum 
norm is characterized. This characterization is achieved by systems 
of necessary and sufficient condition, and by a cone restricted pseu­
doinverse. In models where the decomposing covariance matrices 
span a commutative quadratic subspace, a representation of the con­
sidered estimator is derived that requires merely to solve an ordinary 
convex quadratic optimization problem. As an example, we present 
the two way nested 이assi行cation random model.

An unbiased estimator i앙 derived for the mean squared error of 
any unbiased or biased estimator that is expressible as a linear com­
bination of independent sums of squares. Further, it is shown that, 
for the classical balanced variance component models, this estimator 
is the best invariant unbiased estimator, for the variance of the ANOVA 
estimator and for the mean squared error of the nonnegative minimum 
biased estimator. As an example, the balanced two way nested clas­
sification model with ramdom effects is considered.

1. Introduction

Many Statistician studied estimating nonnegative variance com­
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ponents, by unbiased quadratic estimators.
The proposed nonnegative estimators either lack some desirable 

optimality properties or they exist only for special models, respectively 
are applicable only under particular assumption.

The MINQUE (minimum norm quadratic unbiased estimator), 
introduced by C.R.Rao(1970, 1972, 1973), page 303-305, is usually 
defined on the whole space of appropriate symmetric matrices. In 
order to get nonnegative estimators C.R.Rao (1972). Section 7, suggested 
resticting the class of possible estimators to the corresponding cone 
of positive semidefinite matrices, mentioning the resulting problem 
of finding a unonnegative MINQUE허, if it exists, as likely a difficult 
one. This problem is further considered, e.g„ by LaMotte (1973) and 
Pukelsheim(1977, 1979, 1981).

However, such estimators exist only in very special cases, For example, 
in tte 第函y感s of vanance^(ANOVA) mod나미 the
variance。言，none of the other variane components permit the existence 
of a positive semidefinite matrix that is an unbiased estimator, as 
pointed out by LaMotte(1973 b).

In this paper we consider minimum bias estimators (as introduced 
by Chipman (1964) for estimating mean value parameters), which 
a호e invariant under the group of mean value translations. Here the 
minimum is taken over the app호opwiate cone of positive semidefinite 
matrices afte호 having made a reduction by invariance. These estimators 
always exist, and of course thery guarantee nonnegative estimates. 
Moreover, they are unbiased if nonnegative unbiased quadratic esti- 
matio교 is possible. To get a unique estimator, we choose the on with 
minimal norm.

We characterize the minimum norm minimum bias invariant positive 
semidefinite estimator by introducing a cone—restricted pseudoinver■용es, 
and we obtain a useful necessary and sufficient condition for a matrix 
to be the desired estimator are derived.

In models where the decomposing covariance matrices span a com­
mutative quadratic subspace 나le computation of this estimator is 
호educed to an ordinary convex quadratic optimization problem. As 
an example, 난le balanced two-way nested classification model with 
random effects is considered where the estimators for the three variance 
components are stated explicitly.

2, Formulation of the problem and deftnition
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HMS the Hilbert space of all real symmetric nXn matrices, 
where the inner product is given by (A, B)hms =切AB, defin­
ing the norm IIAII2Hms= for 瓦 B e HMS. Further let 
PSD denote the closed convex cone of positive semidefinite matrices 
in HMS,

PSD={시AeHMS, x^Ax^O for all xeRa}.

We consider the linear variance component model

z〜(X们 iWM), (2.1)
t=i

that consists fo an n—dimensional random variable z with mean value

压=段

and variance -covariance matrix
m

1=1

where the nXk design matrix X and the m symmetric positive semi- 
definite nXn matrices Ui are known, Ui £ PSD, i=lf....... , ms while
the parameter B varies in Rk and the parameter …,”m) varies 
in R™ the nonnegative orthant of

The problem considered here is to find quadratic estimates for the 
variance components that are nonegative and invariant with
respect to the group G of mean value translations,

G={f+X6, Z?eKk).

A maximal invariant linear statistic y with respect to G is given then 
by (Seely 1971)

y~ProjfuKil z =(I一XX*)z,

where I is the nXn identity, X+ is the Moore -Penrose generralized 
inverse, and R(X) denotes the range of X.

We get the reduced linear variance component model

y~(Q 乏여U), 이f 뽀, V^PSD. (2.2)
i=i 
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where Vi=(I—XX*)U\(I —XX*),  z=L…Often a model of the 
kind (2.2) is given- also by the experimental arrangement, for ins­
tance by grouping and measuring of differences.

Now let A G HMS, 나len a quadratic invariant estimate for a linear 
form p，a、p e Rm, js given by Ay3 with the bias

Ey^ Ay—p^ a=*  % (trA 匕一P i) .1=1

Here Ay is an unbiased estimate of p7a if

ZrAVi=Pb for all …jn. (2.3)

It is additionally of "minimum norm” if A solves the problem

mtnmize^^B e HMSr trBVi~pb (2.4)

Then A is called the MINQUE (minimum norm quadratic unbiased 
estimator).

However, the MIQUE doesn't always exist.
Then the condition of unbiasedness (2.3) may be weakened to that 

of finding a best approxmate solution of (2.3), i.e., minimizing the 
discrepancy ^(trAVx—p{)2 over HMS.

Deflnition 2.1 For estimating the linear form p，a the matrix A gHMS 
is the MINQUE that gives minimum bias with respect to HMS, if 
A solves the following problem.

minimize trA2 subject to;Ae HMS, and
minxeMMs 52^( trA ~pi)2 '茶)

Let us introduce the linear operator

/trAVt\

g： HMSiRm [ : j (2.6)
^trAVj

Then (2.5) is equivalent to

minimize (/rA2| A e HMS, minA£ffMsIIgA ~pllRm) (2.7)
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respectively, find a best approxximate solution A, of minimum norm 
of the linear equation gA=p, A € HMS. By definition of a pseudoinverse 
operator, e.g., Holmes (1972), page 220,

本=흥*),  (2.8)

g*  the pseudoinverse of g, which for matrices is identical to the Moore 
—Penrose generalized inverse, cf«, Mitra(1975). The estimator A always
exists and A is equal to the MINQUE if p^R(g).

We now show how to compute g+ The adjoint g*  of g is given by

g소； RJHMS, 41昨=玄0*  以=(⑶…,如). (2.9)
i=i

Then

gg*= (々Wj)3=L…，m (2.10)

and

g*g:  HMS—긍HMS, A-^^trAV^ (2.11)
t=i

Using now the following properties of pseudoinverses in Hilbert spaces
(e.g. Holmes(1972). page 222),

g*=g*(gg*)+,  (2.12)

g+=(g*g)+g*,  (2.13)

we get a computational representation of g*,  resp. of A or of the 
MINQUE A if peR(g).

Lemma 2.1. The estimator 本 satisfies the unormal equation”

支(泓으 [EM (2.14)
i=i i=i

and permit응 the computational representation

A=g+p=Y [ teg*) +p]i Vi. (2.15)1=1

where [刀丄 denotes the ith component of vector w.
Now, an estimate y^Ay with A e HMS can be negative, while estimating 
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nonnegative variance components. Therefore, C.R.Rao(1972), Section 
7, gugg^ted finding a MINQUE over the cone PSD. Le., find a solution 
A0 of the problem

minimize^A21A G PSDt gA^=p}} (2.16)

a problem father considered for instance by LaMotte(1973 b) and 
pukelsheim (1981). However, the kind of models where such an estimator 
A0 exists for all variance components is very limited. For instance, 
as pointed out by LaMotte( 1973b), in ANOVA models the only com­
ponent that might be estimable in thi용 way is the overall variance

: cf., also 난le 2—way nested layout considered in Section 4.
Thus we are led to exchange the unbiasedness condition in (2.16), 

gA=p by the claim to minimize the discrepancy II^A—p||Rm over 
PSD.

Definition 2.2 k^PSD is the nonnegative MINQ minimum bias 
estimator of the linear form p1 « if A solves the following problem,

minimize trA2 subject to : A e PSD, and
(2.17)

II^A—pH =minB€PSD IlgB—pH. *

Lemma 2.1. A always exists and is uniquely determind.
Proof. The cone PSD is closed and convx, g is a continuous linear 

mapping with closed range, R(g\psn) is closed and convex, and so there 
exists a best R (g | psd)—approximation to p, say 腿 that is unique. 
Now PSD A {A JgA=pa is nonempty, closed and convex, so has a unique 
element of minimum norm and this is just A.

Definition 2.3. The operator g |psd ： 7?m PSD is the PSZT-restricted 
pseudoinverse of if for every q^Rm the best apporximatoe solution 
A(q) of minimum norm of the linear equation

gA=q subject to Ac PSD

is given by A(g)=貝十吋。 스

So the solution A of (2.17) is given by A=g(ra)+饱 and by Lemina 
2.1 g|psD+ exists and is a single valued function.

If nonnegative unbiased estimability is given then A automatically 
becomes the unonnegative MINQUE” A°.
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3. Main res미ts

First we consider the class of nonnegative minimum bias estimators. 
For the following convex program, describing the nonnegative minimum 
bias estimators for a linear form q'a,

minunize{\\gA—q\l2\A € PSD} with q e (3.1)

By Lemma 2.1 there always exists a solution of (3.1).

Lemma 3.1. Let f be a Frechet (Gateaux) differentiable convex 
functional on a real normed space X. Let P be a convex cone in 
X. A necessary and sufficient condition that xoe P minimize f over 
P is that

x)W0 for all xeP (3.2)

어Go 3)=。， (3.3)

Proof Necessary ； If x0 minimizes then for any xeP we must 
have

- f(x0+^(x—xQ))\a^o^O 
da

Hence

이Gk； x—xo)^O (3.4)

Setting x=x0/2 yields

어("QMO (35)

while setting x=2x0 yields

再(知％)启0 (3.6)

Together, equations (3.4), (3.5) and (3.6) imply (3.2) and (3.3).
Sufficiency ； For x0, x^P and 0<^<7 we have

f(x0+a(x~x0)) <f(x0) +^[f(x)-f(x0)]

or
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f(x)—fM 느 土 [六&+a(%-Xo)) —f(XQ) ]

As a-송。, the right side of this equsation tends toward Sfg 定저)); 

hence we have

f(z) —f(爲)mfg x~x0). (3.7)

If (3.2) and (3.3) hold, then for all xeP and, hence,
from (3.7)

f(x)—f(xQ)^O for all x으F.

Definition 3丄 Since HMS with the inner product trAB for A, 
B g HMS is a Hilbert space, the wpositive" dual cone of the "positive" 
CTE^rBSD is-^toea by

PSIT={Be HMS\trAB^0 for all A e PSD}.

cf., Luenberger (1969), page 215, Berman (1973), page 5. Now PSD 
is self—dual, and its interior consists of PD, 았le set of positive definite 
matrices in HMS, cf., Berman(1973), page 55, i.e.,

PSD*=PSD,  intPSD=PD

and
PD is nonempty.

Theorem 3.1. The matrix Ao € PSD is solution of (3.1) if and only 
if

亍gA°_ 甘qwPSD, (3.8)

and

曲。(g*g4> —g*g)=O ・ (3.9)

Proof, we consider the minimization solution of convex functional 
f(A)=llg厶一By Lemma 3.1 necessary and sufficient conditions 
that Aq € PSD, minimize f on PSD is that

아(A。； A —A0)=2tr(A —A0)g*(gA 0~q), (3.10)
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Therefore

^f(A0; A)=2trA^(gAQ~q)^0 for all AePSD (3.11)

then by the self-duality of PSD,

g*(gA 0~q)ePSD.

酊(&;&)=2〃&g*(gALq)=Q  (3.12)

Thus is proved
Now we give necessary and sufficient conditions for a matrix A 

to be an estimator A, i.e.3 to be the minimum norm solution of the 
program (3.1) for a qeRmt denoted by cf., Definition 2.2 and 
2.3.

Theorem 3.2 Let 난睥i 4=* 「鬲词，isth^lement of minimum
norm in solution of (3.1), if the following cond辻ion hold for some 
bQeRm.

A=g%ypSD (3.13)

trA(A+^b°)=O. (3.14)

Proof. By definition 2.3 is a s어utm of (3.1), i.e^ A minimizes 
IlgA—qll over PSD. Denote by S(q) the set of all solutions of (3. 
1) and let qa=gA> then q& is 나le unique best &(g|ps°) app호oximation 
to q and

S(q)={A\Ae PSD,財=如}, AeS(q). (3.15)

we have to show that A is the element of minimum norm in S(q). 
For A g HMS, /?m we define

M(A)='~- trA2+(gA—qQ.y1bQ. (3.16)

Differentiating M(A) with respect to A gives gradAM(A)=A-ir^tfi. 
By lemma 3.1 we get minimum M(A). i.e., Gateaux differential is

dM(A;A -A)=tr(A -A) (A+^bQ)
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so that satisfies following

dM(A;A)=trA(A+g*b°)^O  for all pePSD.

dM(A;A)^trA(A+^bQ)^O

then M(A) is minimal at A. Thus we get for all A^S(q).

詩 ZrA2=-^- trA+(gA—q^),lP=M(A)=minAEHMsM(A)

~minA£psDM(A)^minA€s(q)M(A)^^- trA2^ •

Theorem 3.3 Let A=g|psD+q, qeRmt then there hold (3.8), (3. 
9), (3.13) and (3.14). 스

Proof. Let 죠==흐I10广。 ttei A is solution of (3J), thus 更an 
3.1 gives conditions (3.8), (3.9). Let gk=q& then q& is unique. N(q) 
may be define as (3.15).

N(q)={A\AePSDf 財=如}, "N(q\ (3.17)

We consider the convex functional (3.16).

M(A)=*  trA2+(gA—q&) 나)

since trA2<trA2 for all AeN(q),

~ trA.2=~ trA2+(g^—q&)1b==M(A)—minA€N(q)M(A) 
£ N

such that by Lemma 3.1 minimum condition of M(A) over N(q) 
is

dM(A;A)=£M(A+g* 砂)WO for all AePSD (3.18)

WM(A,A)=〃A(A+g，o)=O. (3.19)

Since PSD is self—duality, thus we get by (3.18), A+g*i°  g PSD 
some i°6/?m therefore A satisfies two conditions (3.13) and (3.14)

4. Application
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In many situations discussed, for example, by Gump (1951) and 
Searie (1971, p416) an estimator for a linear form p/ where p is 
a given mXl vector and b=(o\…戶is a vector of unknown variance 
components, is given by linear combination of independent mean squares 

that is, the estimator is expressble in the form

W=言 M (4.1)

where q=(q\…,如)is a given vector and .
The expected mean values are r{~E(Mi)>0
Futher, 丁 =(f 丁履'=L'b, where L is a nonsingular mXm matrix. 
We assume that for some positive integer 代 has a central x2 
distribution with ft df (t=L…，m) so that cor(M)=2diag(T日…技기 
An). Nate that are the sume of squares.

For example, let us con^der iiie balanced two—wajrTwsted 

21永=芹+%+如+知k (、

i=l,…r>l, R=l,…丄〉1, n~rst

where y •心虹 …,瞄 瓦1广.，。成 are independent( l-dimensional random 
variables with 玖九=£知=政氓=0 and £阮云=0言
and 六cR is the mean value parameter. Denote lk=(Z…」)Vk, 
Jk=」〔k Jk=(l伐)Jk, Ik the kxk identity matrix, ^k=/k—
k^N, and ® the Kronecker product of two matrices. ProjRdni-1-= 
In—(ll^)lnln =Kn, cf., Graybill (1976) page 634,

标一乏...=(君..一乏…)+(為.—％..)+(3一毎)，

respectively the orthogonal decomposition

거■序 + 聞 (4.3)

where

0프=及匸® 丿七, Pz=I「区)Ks®Jt，卩3=11：®

are pairwise orthogonal projection matrices： note that 4” 人，Kk are 
projectors and JkK=KJk—0. Further 昌=/顶)厶务儿 U2=Ir0ls^> 
J、C73=Zr®7s® 4-

Using the above decomposition of Kn we easily get
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'Vi—KnUiKfr=Kr ® Js ® Jt=아Pi
卩;打^】G® Js® Kn® Jt=〃q+tP小(4.4)
V3=KnU&Kn=KLPi0 P2® P3 

so that

/st 0 O\ l^f+f+l f+1 1
$=l t t OL 妙0= f+1 f+1 1

\1 1 1) \ 1 1 L

/PiSt+p^+pA ; I t 0 0\
0Q=( W+r J， d尸느느二斉 ( T st 0 I

\ pj 諸 \ 0 -st sfl

(4.5)

Letting MS4 MSB and MSe represent the factor A (among group), 
B within A, and mean squared error (within—group), the estrnnates 
are given by

E(MSA)=E(IIRzl|2/(7Jl))=s0；+t아32；

E(MSb)=E\\p^\\2lr(s-1))=^+^ (4.6)
,E(MSB)=E\l &l 12[rs(t_

The MINQUE's estimators are given by

&=(MSa—MSb)炭
슈： =(MSb—MSe)Ii； (4.7)
ae2=MSE

We introduce the following Lemina.
Lemma 4.1 Let M~(Mv- -\Mmy be an m—dimensional random vector 

with E(M)=T=(7iL/m)'and C be an unbiased estimator for cov(M). 
Then 스

1. An unbiased estimaotr for 2 is given by MM'—C.
2. When the linear combination is regarded as an estimator 

of b’T, then its mean squared error MSE(q1M)=q' M cov(M)q+ (q' r—W 
r)2 is unbiasedly estimated by MSE(qf M)—qf Cq+(q—b)1 (MMf —C) 
(q—b\

3. If cov(M)=(血g(yiM；/(l+yD，…,ymMj/a+ym)) is an unbiased 
estimator of cov(M)(See. Hartung, 1986).

Observing that var(pz a)=q7 cov(M)q^ we find that the mean square 
error(MSE) of estimator (4.1) is



ONNEGATIVE MINIMUM BIASED ESTIMATION IN 107
VARIANCE COMPONENT MODELS

MSE(p' ~5)=q, cov(M)q+(q, T—p <y)2. (4.8)

As shown in the Lemina 4.1, an unbiased estimator of MSE(膏 히 is

M§E(甘3)=q<q+(q—I：py (MM，一。) (q一匸力)• (4.9)

Using the Theorem 5.1 of Hartung (1981), we get the following 
two case results.

〈Case 7〉— 0

(1).  If pw=(LQ0)', then the following facts are obtained.

I MSa\ I 汝；+场악_%2 \

M=~\ MSb 卩 E(M)——I /아/가pg I (4.10)
‘MS」 \ 诚

fi=LL h=r(s—l), h=rs(t-l),賦 丁一]龙 a=0 

cov(M) =2diag[ (sta^+ta^+ff^)2/(r—1)~\,
(4.11)

(处2+%2)2/尸佰一1), <ye4/rs^-J)]

q；M=(MSA-MSB)lst=&^ (4.12)

so that 

var(8^)=2[ (s^+^b+^e2)2/ (厂一1)+(妃設/

(4.13) 
rCs-lJj/s2/2

and

e=2dwg[MS(l(r+1), MSSI(厂(s—I) +2),

(4.14)
MS^j (rs(t-1)+2)/

is an unbiased estimator of cov(M). In the special case in wiich p*a  
is an unbiased estimator formula (4.9) simplifies to MSE(p a)=uar 
(p M)=q Cq, therefore

var(a^2[MS^I(r+l)+MS^I(r(s-l)+2)W^ (4.15)
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(2) . If Pb=(0,l,0y, then

db=qb= 0 1pb~(0,1/t, ―l/t)/,

MSE ①百)=q"ou(M)q6

uar(a：) =2[(础+醴节(如-1)七瑟/rs(t—1) ]/W

诡厂(슝3=23侣；/0任一1)+2)+肱Se2/(冗佔一1)+2)]/产

(3) . If Pe=(O01)', then

de=Qe= (0,0,1/

uar(S^) 1).

血宙)=은MS却/专 (11)4-2),

(Case 2〉d 罗(航一Q)=0

(1) . If Pa=(10O)‘，then

払=如=(S0 V子+1) 00)，

1「'遍(]风 o)1 where L = $

^=stMSAKiW+l).

"U* 扌 2、 $铲(攻；+处2+%2) 卩2($자/-%2)2 S^b2—ffa2]
MSESa )- (r_1)(^+e+1)2 +[——有逐宥

Mg 勺_ 2s요皈SF , (r-1) (f+l)MS^
(aL (r+l)(^+t2+l)2 十(r+l)^W+l)2

2(牛)MSa・MSb , r(s—l)MSk 
s은产+产+1) 扌 W(r(s—1)+2)

(2) . If Pb=(O,l,Oy , then

示=如=(0,计(*+1),0) ，,瓦，a=tMSBl(f+l)^

(4.16)

(4.17)

(4.18)

(4J9)

(4.20)

(4.21)

MSE(瓦2)=
(竹了+%2)2

+Z)r(s—1)
（肅+腸2

（e+i）2 (4.22)
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MSF(c2)一 2*MS ； rs(t —1)MS^
MSES)—(/牛)(m)+2) + (rs(t-1)+2)f

(4.23) 
r(s~l)MS^ 2MSe - MSb

十孕(耳 DU制 £一1)+2) e(f+i)一

(3).  If 如=(0,0,1)', then

de=q°= (001)'

var(a^) =2o；=2b：jrs(t— 1), vdr(^) =2MS3(rs(t—1)+2) (4.24)

Remark. In models satisfying some assumptions, the ANOVA esti­
mator of pP is p^=plL/-1M and the nonnegative minimum biased 
estimator of pla is pia=d/M, where d £#핏 minimizes uniquely (Ld 
一p)‘ (Ld—p) over Rm+ Thus • both estimators are of 나le form (4. 
1).

The unbiased estimator MSE(所)is the best unbiased estimator 
of MSE(廿where p'b is any unbiased or biased estimator of p勺 
of the general form p,^=q/M,
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