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ONNEGATIVE MINIMUM BIASED ESTIMATION
IN VARIANCE COMPONENT MODELS"

Jong Hoo Lee

ABSTRACT

In a general vanance component model, nonnegative quadratic
estimators of the components of variance are considered which are
invariant with respect to mean value translaion and have minimum
bias (analogously to estimation -theory of mean value paramesers),
Here the minimum is taken over an appropriate cone of positive
semidefinite matrices, after having made a reduction by invariance.

Among these estimators, which always exist the one of minimum
norm is characterized, This characterization is achieved by systems
of necessary and sufficient condition, and by a cone restricted pseu-
doinverse, In models where the decomposing covariance matrices
span a commutative quadratic subspace, a representation of the con-
sidered estimator is derived that requires merely to solve an ordmnary
convex quadratic optimization problem. As an exampie, we present
the two way nested classification random model.

An unbiased estimator is derived for the mean squared error of
any unbiased or biased estimator that is expressible as a linear com-
bination of independent sums of squares. Further, it is shown that,
for the classical balanced variance component models, this estimator
18 the best invariant unbiased estimator, for the variance of the ANOVA
estimator and for the mean squared error of the nonnegative minimum
biased estimator, As an example, the balanced two way nested clas-
sification model with ramdom effects is considered.

1. Introduction

Many Statistician studied estimating nonnegative variance com-
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ponents, by unbiased quadratic estimators.

The proposed nonnegative estimators either lack some desirable
optimality properties or they exist only for special models, respectively
are applicable only under particular assumption,

The MINQUE (minimum norm quadratic unbiased estimator),
introduced by C.R.Rao(1970, 1972, 1973), page 303-305, is usually
defined on the whole space of appropriate symmetric matrices, In
order to get nonnegative estimators C.R.Rao (1972). Section 7, suggested
resticting the class of possible estimators to the corresponding cone
of positive semidefinite matrices, mentioning the resulting problem
of finding a “nonnegative MINQUE", if it exists, as likely a difficult
one, This problem is further considered, e.g., by LaMotte (1973) and
Pukelsheim (1977, 1979, 1981).

However, such estimators exist only in very special cases, For example,
in the analysis of vadance {ANOVA) models, besides the overall
variance o5, none of the other variane components permit the existence
of a positive semidefinite matrix that is an unbiased estimator, as
pointed out by LaMotte(1973 b).

In this paper we consider minimum bias estimators {as introduced
by Chipman (1964) for estimating mean value parameters), which
are invariant under the group of mean value translations, Here the
minimum is taken over the appropriate cone of positive semidefinite
matrices after having made a reduction by invariance. These estimators
always exist, and of course thery guarantee nonnegative estimates.
Moreover, they are unbiased if nonnegative unbiased quadratic esti-
mation is possible. To get a unique estimator, we choose the on with
minimal norm,

We characterize the minimum norm minimum bias invariant positive
semidefinite estimator by introducing a cone—restricted pseudoinverses,
and we obtain a useful necessary and sufficient condition for a matrix
to be the desired estimator are derived.

In models where the decomposing covariance matrices span a com-
mutative quadratic subspace the computation of this estimator is
reduced to an ordinary convex quadratic optimization problem. As
an example, the balanced two—way nested classification model with
random effects is considered where the estimators for the three variance
components are stated explicitly,

2. Formulation of the problem and definition
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HMS the Hilbert space of all real symmetric aXn matrices,
where the inner product is given by (A, B)uwms= trAB, defin-
ing the norm lA¥yus=1trA? for A, B HMS. Further Ilet

PSD denote the closed convex cone of positive semidefinite matrices
in HMS,

PSD={A|A€ HMS, x' Ax 20 for all x<R"}.

We consider the linear variance component model
2~ (XB, ey, (2.1)
that consists fo an n—dimensional random variable z with mean value
Ez=XA
and variance-covariance matrix
cov(z)=:z’:a.U;

where the nX% design matrix X and the m symmetric positive semi-
definite nXn matrices U: are known, U; € PSD, i=1,-----, m, while
the parameter £ varies in R* and the parameter a={a, - ,ay) varies
in RT, the nonnegative orthant of g™

The problem considered here is to find quadratic estimates for the
variance components a,,--.am, that are nonegative and invariant with
respect to the group G of mean value translations,

G={2—2+X8, BcR"}.

A maximal invariant linear statistic y with respect to G is given then
by (Seely 1971)

y=Projyx 2 =~ XX*)z,

where 1 is the nXn identity, X' 1s the Moore-Penrose generralized
inverse, and R(X) denotes the range of X.
We get the reduced linear variance component model

y~(0, TmVy), «cRY, V,ePSD. (22)
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where Vi=(I—XX")U(I-XX"), i=1,---m. Often a model of the
kind (2.2) is given-also by the experimental arrangement, for ins-
tance by grouping and measuring of differences,

Now let 4 € HMS, then a quadratic invariant estimate for a linear
form pra, p € R™, is given by y/Ay, with the bias

Ey’Ay—p'a=g « (trAV,—p)).
Here y- Ay is an unbiased estimate of p’a if
rAVi=P, for all 1==1---m. (2.3)
It is additionally of “minimum norm” if A solves the problem
minimize{trB?| B € HMS, trBVi=p,, 1=1,---,m}. (24)

Then A is called the MINQUE (minimum norm quadratic unbiased
estimator),

However, the MIQUE doesn't always exist.

Then the condition of unbiasedness (2.3} may be weakened to that
of finding a best approxmate solution of (2.3), ie, minimizing the
discrepancy D (trAV,—p;)? over HMS,

Definition 2.1 For estimating the linear form psa the matrix A € HMS
if. the MINQUE that gives minimum bias with respect to HMS, if
A solves the following problem,

minimize trA? subject to; Ac HMS, and

X (2.5)
N eyns Zlm(trAVl_pl)z
Let us introduce the linear operator
trAvV,
& HMS—>R™ A—gA= ( ) (2.6)

Then (2.5) is equivalent to

minimize {rA%| A€ HMS, min,causi A~ plgm} (2.7)
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respectively, find a best approxximate solution A, of minimum norm
of the linear equation gA=p, A € HMS. By definition of a pseudoinverse
operator, e,g., Holmes (1972), page 220,

A=g'p, (2.8)

g" the pseudoinverse of g, which for matrices is identical to the Moore
—Penrose generalized inverse, cf., Mitra(1975). The estimator A always
exists and A is equal to the MINQUE if p< R(g).

We now show how to compute g* The adjoint g* of g is given by

g: R">HMS, a—>g‘a=:21 Vi, a=(a, .em). (2.9)
Then
gg'=(trViVy)y;=1,--, m (2.10)
and
g'g: HMS—HMS, A3 (rAV,)V, (2.11)

Using now the following properties of pseudoinverses in Hilbert spaces
{e.g. Holmes(1972). page 222),

g=g"(gg")", (2.12)
g=(g"s)"g", (2.13)

we get a cgmputational representation of g', resp. of A or of the
MINQUE A if pe R(g).

Lemma 2.1. The estimator A satisfies the “normal equation”
g(tﬂivﬂm:g LphiV., (2.14)
and permits the computational representation
A=gp=3[(&"y D).V (2.15)

where [w]; denotes the ith component of vector 1.
Now, an estimate y- Ay with A € HMS can be negative, while estimating
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nonnegative variance components, Therefore, C.R.Rao(1972), Section
7, guggested finding a MINQUE over the cone PSD. ie,, find a solution
A° of the problem

munimize{trA?| A € PSD, gA=rp}, (2.16)

a problem futher considered for instance by LaMotte(1973 b) and
pukelsheim (1981). However, the kind of models where such an estimator
A’ exists for all variance components is very limited., For instance,
as pointed out by LaMotte{(1973b), in ANOVA models the only com-
ponent that might be estimable in this way is the overall variance
og’ ¢ cf, also the 2—way nested layout considered in Section 4.

Thus we are led to exchange the unbiasedness condition in (2.16),
gA=p by the claim to minimize the discrepancy [gA—pilgm over
PSD.

Definition 22 A<PSD is the nonnegative MINQ minimum bias
estimator of the linear form p’ a if A solves the following problem,

minimize trA® subject to : A € PSD, and

2.17)
lgA—pl=mingepso lgB—pi. ¢

Lemma 2.1. A always exists and is umquely determind,

Proof, The cone PSD is closed and convx, g is a continuous linear
mapping with closed range, R(glpsp) is closed and convex, and so there
exists a best R(g|psp)—approximation to p, say ps, that is unique,
Now PSDN{A}gA=p, is nonempty, closed and convex, so has a unique
element of minimum norm and this is just A,

Definition 2.3. The operator glpsp: R — PSD is the PSD-restricted
pseudoinverse of g if for every g€ R™ the best apporximatoe solution
A(g) of minimum norm of the linear equation

gA=q subject to A€ PSD

is given by A(g)=gi'psnq.

So the solution A of (2.17) is given by A=glpsp+p, and by Lemma
2.1 gitpsp+ exists and is a single valued function.

If nonnegative unbiased estimability is given then A automatically
becomes the “nonnegative MINQUE”™ A°.
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3. Mairp results

First we consider the class of nonnegative minimum bias estimators,
For the following convex program, describing the nonnegative minimum
bias estimators for a hnear form ¢'«,

minimize{llgA—qll?| A € PSD} with < R™ (3.1)
By Lemma 2.1 there always exists a solution of {3.1).

Lemma 3.1. Let f be a Frechet(Gateaux} differentiable convex
functional on a real normed space X. Let P be a convex cone in
X. A necessary and sufficient condition that x,€ # minimize [ over
P1s that

Sf(xo; x)=0 for all x€P (3.2)
df(xo * xo)=0, {3.3)

Proof Necessary : If x, minimizes f, then for any x€ P we must
have

A b)) ]a-0 20

Hence
Sf(xo; x--x0) 20 (34)
Setting x=1x,/2 yields
I (xpx0) =0 (35)
while setting x=2x, yields
Of (x0%0) 20 (3.6)

Together, equations (3.4), (3.5) and (3.6) imply (3.2) and (3.3).
Sufficiency ; For x,, x€P and 0<a<1 we have

f(ota(x—x0}) <f(xo)Fe[f(x) —(xo) ]

or
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F0)~1(20) 2 [f(xsta(x—1a)—f(x)]

As a—0, the right side of this equsation tends toward df(x, z-x,):
hence we have

f(2)—f(x0) Z0f(xy; x-x). (3.7)

If (3.2} and (3.3) hold, then df(xyx-x,)20 for all x€ P and, hence,
from (3.7)

f(x)—f(x,)=0 for all x& P.

Definition 3.1. Since HMS with the inner product fr4B for A4,
Be€ HMS is a Hilbert space, the “positive” dual cone of the “positive”
corre -PSE is_given by

PSD*={Be HMS|trAB=0 for all A € PSD}.

cf., Luenberger (1969), page 215, Berman (1973), page 5. Now PSD
is self —dual, and its interior consists of PD, the set of positive definite
matrices in HMS, cf,, Berman{1973), page 55, ie.,

PSD*=PSD, intPSD=PD

and
PD is nonempty.

Theorem 3.1. The matrix A,€ PSD is solution of (3.1) if and only
if

geA,—gqe PSD, {3.8)
and

trA, (g'gA,—g"q)=0. (3.9)
Proof. we consider the minimization solution of convex functional
f(A)=1lgA—qll>. By Lemma 3.1 necessary and sufficient conditions
that A,€ PSD, minimize f on PSD is that

Of(Ag; A—A)=2tr(A—Ao)g" (8A0—0), (3.10)
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Therefore
Sf(Ay; A)=2trAg (gA,~—q)20 for all A€ PSD (3.11)
then by the self—duality of PSD,

g'(gA,—q) € PSD.

Of(Ao; Ag)=2trAg (gAc—q)=0. (3.12)

Thus is proved

Now we give necessary and sufficient conditions for a matrix A
to be an estimator A, re., to be the mimimum norm solution of the
program (3.1) for a g€ R™, denoted by g| psp¢. cf,, Definition 2.2 and
2.3.

Theorem 3.2 Let g€ R™, then A==g|*pspq, is the element of minimum
norm in seolution of (3.1), if the following condition hold for some
YeRm

A=g"t"€ PSD (3.13)
trA(A+g%)=0. (3.14)

Proof. By definition 2.3 A is a solutin of (3.1), i.e., A minimizes
llgA—qll over PSD. Denote by S(¢) the set of all solutions of (3.
1) and let g;=gA, then ¢, is the unique best R(g|psp) approximation
to ¢ and

S(¢)={A|AcPSD, gA=q.}, A€S(q). (3.15)

we have to show that A is the element of minimum norm in S(g).
For Ae HMS, °c R™ we define

M(A):é trA” (34 —qa) b (3.16)

Differentiating M(A) with respect to A gives grad M(A)=A-+g'b.
By lemma 3.1 we get minimum M(A). ie, Gateaux differential is

SM(A:A—A)=tr(A—A) (A+5H")
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so that satisfies following
SM(A;A)=trA(A+g'b°) =20 for all pc PSD.
SM(A;A)=trA(A+g'1°) =20

then M(A) is minimal at A. Thus we get for all A,€S(q).

% trﬁz"—"é trﬁ'-{— (gz:l'—qa)'b°=M(Z)=miRu«usM(A)

=minacpspM(A) émm.«esmM(A)éé trA?, -

Theorem 3.3 Let f\=g|?sp+q, g€ R™, then there hold (3.8), (3.
9), (3.13) and (3.14).
Proof. Let A=g|psp-q, then A is solution of (3.1}, thus Theerem
3.1 gives conditions (3.8), (3.9). Let gA==g, then gs is unique. N(gq)
may be define as (3.15).
N(g)=(A| A€ PSD, gA=qa}, AcN(g). (317)

We consider the convex functional (3.16).
M(A)=étrA2+(gA-—qa)‘b
since trA*<rA? for all A€ N(g),
< tr&=L rA+ (gA—q0)'b=M(A)=minsema M(A)

such that by Lemma 3.1 minimum condition of M{A) over N(q)
i8

SM(A;A)=trA(A+g"t")=0 for all Ac PSD (3.18)
SM(A, A)=tr A(A+g"°)=0. (3.19)

Since PSD is self—duality, thus we get by (3.18), A+g*6°c PSD
some °cR™ therefore A satisfies two conditions (3.13) and (3.14)

4. Application
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In many situations discussed, for example, by Gump (1951) and
Searie (1971, p416) an estimator for a hnear form p‘o, where p is
a given mX 1 vector and 6={(5,,-+-,64) is a vector of unknown variance
components, is given by linear combination of independent mean squares
M, Mg that is, the estimator is expresshle in the form

po=35 aM=q' M (41)

where g=(g,"*",qm)’ is a given vector and M=(M,- -, Mu) .
The expected mean values are m=E(M;)>0 (1=1,---,m)
Futher, 7==(7,,---,7yp) = L'o, where L is a nonsingular mXm matrix.
We assume that for some positive integer f,, fiM /7, has a central x?
distribution with f; df (1=1,---,m) so that cor(M)=2dwag(T}?f. .7
fm). Note that fM,,--- fmMy, are the sume of squares,

Forexample, let us consider the balanced two—way mested

Zue=ptatbytey (42)

r=1,cr>1, j=1,--8>1, k=1,-t>1, n=rst

where a,,**-,ar,by, ,brs, em,*",er are independent( 1—dimensional random
variables with Eo=FEb,—=Fe,—0 and Ea’=0s’, Ebf=0y", Eew =0},
and #€R is the mean value parameter. Denote h=(1,:-,1)€ R
Jk=11: 1y, Jk=(]]k)<]k, Ik the kXk identity matrix, Kk=I|‘_jk,
keN, and ® the Kronecker product of two matrices. Projgun+=
In—(1fn) 1,15 =Ky, cf,, Graybill (1976) page 634,

A2 = (Z.. —Z.. )+ (Zy. — 2. ) (Lie—Z0.).

respectively the orthogonal decomposition
Knz=pz+tpaztpz (4.3)
where
=K ®Js®d,, P,=I,0K;®J,, p;=I @K QK
are pairwise orthogonal projection matrices; note that I, Ji, K, are

projectors and J,K=KJ,=0. Further U=I®J;®J, U=LRL®
JL, U3=Ir®rs®};.

Using the above decomposition of K, we easily get
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V2=KnUgKn=Kr®js®Jt+lf®Kn®Jt:tpi+tpz_ (4.4)

{V1=KnUlKanr®J3® Jt:stpl
ngKnUgKn=Kn=P1®P2®P3

so that
st 0 0 Fe+2+1 P41 1
o= (t t 0, ¢ o= P+1 £+1 1)
111 1 1 1
Dst+pA+p, i ¢ 0 0 (45)
&' p— pA+ps |, 45"*-72“ —t st O)
Ds 5 0 —st st

Letting MSs, MSg and MSg represent the factor A (among group),
B within A4, and mean squared error (within—group), the estrimates
are given by

E(MS2)=E(| Pl3{(r— 1)) =st0s>+to,*+a¢?
E(MSg)=E Pzll*r(s—1))=toy’+ 0 (4.6)
E(MSp)=El Pz1}rs(t—1))=toe’

The MINQUE’s estimators are given by

o,?=(MSp— MSg)/t (4.7}
S=MSg

We introduce the following Lemma.

Lemma 4.1 Let M=(M,--- Mpy) be an m—dimensional random vector
with E(M)==7=(7,--,7n) and C be an unbiased estimator for cov(M),
Then )

1. An unbiased estimaotr for T is given by MM'—C.

2. When the linear combination ¢'M is regarded as an estimator
of b7, then its mean squared error MSE(¢'M)=q'M cov(M)q+ (g’ =¥
7)? is unbiasedly estimated by MSE(q" M)=q’ Cqg+(q—b) (MM’ —C)
(g—b).

3. If cov(M)=diag(v,M?[(1+y)," " ¥mMn’[(1+¥m)) is an unbiased
estimator of cov(M)(See. Hartung, 1986).

Observing that var(p’7)=gq’cov(M)q, we find that the mean square
error(MSE) of estimator {4.1) is

‘3:12: (MSA—MSB)/St



ONNEGATIVE MINIMUM BIASED ESTIMATION IN 107
VARIANCE COMPONENT MODELS

MSE(p'3)=q’ cov(M)g+ (g’ T—p< o). (4.3)
As shown in the Leroma 4.1, an unbiased estimator of MSE(p’s) is
MSE®' 3)=¢ Cq+(q—L'pY (MM’ —C) (q—L'p). (49)

Using the Theorem 5.1 of Hartung (1981), we get the following
two case results,

{Case 1) da=F *Pa=ga.
(1). If pa=(1,0,0Y, then the following facts are obtained.
da=ga=(1fst, —1fst, O

/ MS,\ / Swa2+wb2+0'e2\
M= MSs |, FE(Mj=r= \ t0y" 406" J (4.10)
MSe ) g

fi=r—1, f=r(s—1), fe=rs(t—1), qi T—pi e=0

cov( M)=2dag| (stog’+toy’+06’)*/ (r—1)],

(tot+-aet)r(s—1), oe'irs(t—1)] (1
a'M=(MSp— MSg)/st==5y" (4.12)

so that

var(8,2)=2{ (stoa>+tor! o) (r— 1)+ (tori+0")
r(s— 1) 1/s%2 (413
and
C=2dwg[ MSK?|(r+1), MS&*((r(s—1)+2),

(4.14)

MS¢{(rs(t—1)+2))
is an unbiased estimator of cov(M). In the special case in wiich p's
is an untziased estimator formula (4.9) simplifies to MSE(@ &)=uvar
(B 6)=q Cq, therefore

vér(5:2)=2[ MS? (r4+1)+MSe/ (r(s— 1)+2) 1/, (4.15)
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(2). If P,=(0,1,0y, then
dv=gqv= D 'pp=(0,1ft, —1[t)",
MSE(p'3)=q4cov(M)q

var(dy))=2| (to*+0¢)Ir(s— 1)+oe’rs(t— 1) )|
var(6y")=2{ MSg*/(r(s — 1)-+2)+MSe*/(rs(t— D)+2) }#

(3). If pe=(0,0,1)’, then

do=ge==(0,0,1)"
var(Ge?)=2a¢'frs(t—1).
wir(3e)=2MSE (rs(t—1)+-2),

(Case 2) d¢ (d—p)=0
(1). If pa=(1,0,0)", then

da==qa==(st/(PL+FP+1),0,0)
L7 pa(1fst, —1fst, o) where L=
G2=stMSa/ (P4 1).

5 2y SC(Stoe" oy +0e’) | [£(s0,2—0g") $t0y"— "
M =" "D we+it 1y Hr e
MSE(@G )= 25UMSY | (1) (PHDMSy

(rH1)(FEt21)7 ' (r DSFE(SE P+ 1)

264+ 1)MSa - MSg , r(s— I)MS4’
SEELHE+HD) T PR(s—1)+42)

(2). If py=(0,1,0y , then
Eb=0b=(0,ff(tz+1)‘0)f , D F=tMSg/(F+1)=5,2

(o' +0’) | (to+ap?)?
B+ Dr(s—1) ' (£+17

MSE(G,%)=

(4.16)
(4.17)

(4.18)
{419)

(4.20)

(4.21)

(4.22)
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. e ZJZMSBZ rs(t—})MSEz

MSEG)I="ETD o172 T (= 1)42)7
(4.23)

+ r(s—1)MSy’ — 2MSg - M5y

E(P+1P(rs(t—1)+2) B(R+1)
(3). If pe=(0,0,1), then

de=ge=(0,0,1Y
var(Fe’)=20¢'=205"Irs(t—1), var(6)=2MSg¥(rs(t—1)+2) (4.24)

Remark. In models satisfying some assumptions, the ANOVA esti-
mator of p's is p6=p'L"M and the nonnegative minimum biased
estimator of p's is p'o=d’M, where d € R® minimizes uniquely ( Ld
—p)’ (Ld—p) over R™, Thus - both estimators are of the form (4.
1).
The unbiased estimator MSE(p5) is the best unbiased estimator
of MSE(»'5), where p/e is any unbiased or biased estimator of p'o
of the general form p's—=¢'M.
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