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Methods and Techniques for Variance Component Estimation in Animal Breeding자 

-Review -

C. Lee*
Lab of Statistical Genetics, Institute of Environment & Life Science, Hallym University, Chuncheon 200-702, Korea

ABSTRACT : In the class of models which include random effects, the variance component estimates are important to 
obtain accurate predictors and estimators. Variance component estimation is straightforward for balanced data but not for 
unbalanced data. Since orthogonality among factors is absent in unbalanced data, various methods for variance component 
estimation are available. REML estimation is the most widely used method in animal breeding because of its attractive 
statistical properties. Recently, Bayesian approach became feasible through Markov Chain Monte Carlo methods with 
incTeasin용ly powerful computers. Furthermore, advances in variance component estimation with complicated models such as 
generalized linear mixed models enabled animal breeders to analyze non-normal data. (Asian-Aus. J. Anim. Sci. 2000, Vol, 
13, No. 3 : 413-422)
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INTRODUCTION

Mixed models have been extensively used in 
Animal Breeding applications. In the class of models, 
the prediction of random effects that include breeding 
values assumes known variances. However, we do not 
know the variances in field data and should estimate 
variance components. Therefore, accurate prediction of 
breeding values depends on accurate variance 
component estimation. Many animal breeders have 
made efforts to develop a variety of statistical 
approaches and computing algorithms for variance 
,component estimation.

Tliis paper reviewed essential landmark research on 
variance component estimation in animal breeding. 
Many references on sophisticated mathematical 
statistics were given for the purpose of understanding 
basic ideas, but some of them are complicated to deal 
with. This paper gives a brief description about 
solving fixed and random effects under the assumption 
of known variances. Also, the current review deals 
with the development of various methods to estimate 
variance components. A variety of methods: analysis 
of variance (ANOVA)-based methods, minimum 
variance quadratic unbiased estimation (MIVQUE), 
likelihood-based methods, Gibbs sampling, method R, 
and the methods with nonlinear models, are discussed.

FUNDAMENTALS

This section gives a description of fundamental 
ideas on mixed models. A general form of the mixed 
models and Hendersons mixed model equations (MME)
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are presented. For more details, see the text by 
Henderson (1984) and its supplement by Searle (1998).

Mixed linear models
A general formulation of mixed linear models is:

y=X B +Zu+e (1)

where y is the vector of n observations, B is the 
vector of unknown fixed effects, u is the vector of 
unknown random effects, and e is the vector of 
residuals. The X and Z are the known design matrices 
for the fixed and random effects, respectively. The 
first and second moments of the random variables are 
defined as;

XB y
Var u

.e

, V ZG R
= ZG G 0

R 0 R .
(2)
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where V=ZGZ'+R. In animal breeding applications 
with a single trait model where the random vector u 
includes only additive genetic effects, the variances of 
random variables are simply expressed as G=Aa 
and R= la; where A is the numerator relationship 
matrix, o，is the additive genetic variance, j is 
the residual variance.

Estimation of fixed and random effects
In order to estimate the fixed and random effects, 

the following Henderson's MME are utilized 
(Henderson, 1973).

r X'R~xX X'R-'Z 矿 1 刃 ⑶
[Z'R~xX Z'R~XZ+G~X\[ u \ [ Z R~x y\

Under the assumption of known (co)variances, the 
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solutions obtained from the MME are best linear 
unbiased predictor (BLUP) respectively for 3 and u 
(Henderson et al., 1959; Henderson, 1963). If G= Ac% 
and R=硏，their inverses can be easily calculated 
since Henderson (1976) and Quaas (1976) developed 
efficient algorithms to directly calculate the inverted 
numerator relationship matrix, A'1. Since the size of 
the coefficient matrix is often huge in animal 
breeding, the solutions cannot be obtained by direct 
inversion of the coefficient matrix. Then the MME are 
solved by Jacobi and Gauss-Seidel iteration (Golub 
and Van Loan, 1983; Misztal and Gianola, 1987).

A BRIEF DESCRIPTION OF TRADITIONALLY 
IMPORTANT METHODS

As previously addressed, the variances in practice 
arc not known, and variance components should be 
estimated from field data. This section presents a brief 
review of important methods of variance component 
estimation prior to likelihood-based estimation. For 
more details, see Searle et al. (1992).

Analysis of variance-based methods
Estimation of variance has been developed from 

Fisher's (1925) ANOVA table which summarizes a 
partitioning of observed variability. The principle of 
ANOVA method is to equate ANOVA sums of 
squares to their expected values which are linear 
functions of the variance components. Those expected 
values must be such as to not include functions of 
fixed effects. Variance components are estimated by 
solving a system of equations. For balanced data, 
ANOVA estimators are best quadratic unbiased 
estimators and they are reduced to best unbiased 
estimators under normality. For unbalanced data, 
unifonnly best variance component estimators do not 
exist. Henderson (1953) developed three different sets 
of quadratic forms by adapting the ANOVA method 
for unbalanced data (Later, Henderson developed 
method IV which was more closely related to the 
quadratics used in MIVQUE, so often called Diagonal 
MIVQUE). Henderson's Method I uses quadratics that 
arc analogous to the sums of squares from balanced 
data and is applicable to random models in which X 
B = I卩、 Henderson's Method II is a han이 ation 
invariant procedure which adjusts the data for fixed 
effects and then uses a variant of Method I. 
Henderson's Method III is the fitting constants method 
which uses the reductions in sums of squares due to 
fitting one model and its submodels. This method is 
not unique in specifying reductions in sums of 
squares. The method III is applicable to mixed 
models. For sampling variances of the estimators from 
the three methods, closed form expressions are 
possible, but they would be very complicated; no one 

has derived them.
Variance components estimated by ANOVA-based 

methods are not necessarily nonnegative, which is a 
fatal property for researchers to avoid. A great merit 
of the ANOVA-based methods is unbiasedness of their 
estimates. However, covariance structure created from 
genetic relationships in a population under selection 
led variance component estimates to be biased 
.(Sorenson and Kennedy, 1984).

Minimum variance (or norm) quadratic unbiased 
estimation

Another method to estimate variance components 
was developed with desirable properties of 
unbiasedness and minimum variance. It is called the 
minimum variance quadratic unbiased estimation 
(MIVQUE). The MIVQUE assumes normality. On the 
other hand, in minimum norm quadratic unbiased 
estimation (MINQUE) a known Euclidean norm is 
minimized instead of the unknown variance. The 
MINQUE does not require the normality assumption 
and reduces to MIVQUE under normality. For details 
of the both methods, see the series of articles by 
LaMotte (1970, 1973) and Rao (1970, 1971a, b, 1972). 
The articles may be elegant from theoretical point of 
view, but lackin 응 in apply in 응 the methods to real 
data. Solving MIVQUE/MINQUE equations requires no 
iteration. However, solutions to the equations depend 
on the choice of the pre-assigned estimates of the 
variance components, and furthermore needing the 
estimates makes MINQUE useless. The MIVQUE/ 
MINQUE equations are similar to those for restricted 
maximum likelihood (REML). Hocking and Kutner 
(1975) observed that MINQUE equals to a first iterate 
of REML. In practice, it is often suggested to solve 
the MINQUE/MIVQUE equations repeatedly up to 
convergence. Harville (1977) found that the estimates 
at the convergence equal to REML solutions. 
Therefore, if the solutions are within the parameter 
spaces, they are equivalent to REML estimates.

In anim시 breeding applications with a single trait 
model where u includes only additive genetic effects, 
Sorenson and Kennedy (1984) and Van Tassell et al. 
(1995) obtained MIVQUE of the genetic and residual 
variances by deriving the following equation: 

r 贝宓物 贝预诚][Q ! 1(4)
[tr{ZAZ'}-tr{CWZAZ'W) n~tr{CWW) Q'A

where C is the inverse of the coefficient matrix in 
MME, C=[ C 传[X Z\,Qi=u'K{u, and Q,= 
y'y-y'WCWy. Sorenson and Kennedy (1984) and Van 
Tassell et al. (1995) reported that the MIVQUE of 
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variance components were biased and their mean 
squared eiTors were large.

LIKELIHOOD-BASED METHODS

This section gives procedures for using likelihood 
functions. For details, see Quaas (1991) and Searle et 
시. (1992). Nowadays REML estimation is considered 
as a standard method to estimate variance components 
with mixed models.

Maximum likelihood
Hartley and Rao (1967) developed maximum 

likelihood (ML) procedure to the estimation of 
variance components. Assuming that y~N(X3 V\ the 
log likelihood function of y is:

5 8 — .51og|%-.5('—X0. (5)

Equating the derivatives of this function with respect 
to variance components to zero gives ML estimates of 
the variance components if the solutions from the 
equations are in the parameter space. This is because 
the likelihood function must be maximized within the 
parameter space. So, if the ML estimate is the 
boundary value of the parameter space, then the 
likelihood is likely to differ from zero at the 
maximum. For details, see Henderson (1973), Laird 
(1982), and Searle et al. (1992). Especially, Laird 
(1982) and Searle et al. (1992) presented 
expectation-maximization (EM) algorithms. The ML 
estimator has attractive features of large sample 
properties (Hartley and Rao, 1967). First, the 
estimators arc asymptotically unbiased. Second, the 
asymptotic dispersion matrix of the estimators is 
available. It is expressed as the inverse of Fishers 
information matrix. The dispersion matrix is a function 
of the unknown variance components. It can be 
calculated if those components are replaced by their 
corresponding estimates. Then it is an estimated 
disper어on matrix. Third, the dispersion matrix of the 
estimators asymptotically achieves the Cramer-Rao 
lower bound for the dispersion matrix of unbiased 
estimators. That is, the estimators have the property of 
asymptotic efficiency (Mood et aL, 1974; Casella and 
Berger, 1990).

In animal breeding applications, the empirical 
variance component estimates did not differ from their 
corresponding input values in the simulation study of 
Rothschild ct al, (1979). The ML estimators have
시most the same statistical 
regardless of merit or demerit, 
(akc account of the degrees 
involved in estimating fixed 
overcomes the problem. Only 
researchers to prefer REML 

properties as REML 
However, ML does not 
of freedom which are 
effects, while REML 

this difference has led 
to ML, especially in

animal breeding analyses where the number of levels 
for fixed effects are usually large.

Restricted maximum likelihood
Patterson and Thompson (1971) derived restricted 

maximum likelihood to estimate variance components. 
In order to account for the loss in degrees of freedom 
on estimating fixed effects, the method uses restricted 
likelihood where estimates of the fixed effects are 
adjusted, i.e. linearly independent error contrasts K'y, 
where K'X = 0 and K，has full row rank, are used 
instead of y. This method led the variance component 
cstim 지。！s to be invariant to constraints to get 
estimates of the fixed effects. The likelihood of K'y 
with K'y - N(0,KfVK) is as follows:

，서迎 = - .51og|K VK\ — ,5VTOK VK) ^K'y
(6)

In fact, maximizing the restricted likelihood does 
not require knowing reference to the matrix of the 
error contrasts (K), and the likelihood function is 
expressed as follows (Harville, 1977):

/成 一 .5{log国 + logIX’r'XI
(7) 

+ (y—X0)'广'(y-X0)}.

Harville (1977) and Searle (1979) developed 
another equivalent form:

Mr — .5{log| 田+ log| 셔+IC1+M 灼} (8)

where 尸=广-广X(X'广X尸X"'. As in ML, REML 
estimates must be in the parameter space. In addition 
to the attractive large sample properties shown in ML, 
the REML estimators are likely to have the property 
of unbiasedness if the values which maximize the 
likelihood are in the parameter space when considering 
that, for balanced data, the solutions to REML 
equations are equivalent to those from ANOVA 
(Patterson and Thompson, 1974; Corbeil and Searle, 
1976; Searle et al., 1992). In anim시 breeding, a 
number of simulation studies showed that input values 
of the variance components were obtained by REML 
regardless of selection (e.g., Jensen and Mao, 1991; 
Lee and Pollak, 1997a; Schenkel and Schaeffer, 1998). 
However, note that parent misidentification or splitting 
data cannot explain the selection. Random deletion or 
misidentification of parent identifications in selected 
populations results in significant differences between 
variance component estimates and their corresponding 
input values. Thus correct and complete pedigree 
information is important (Lee and Pollak, 1997b; 
Kennedy and Sorenson 1988; Schaeffer et al. 1998). 
Partitioning data by gender and analyzing only male 
(or female) data did not account for selection on 
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females (males), and variance component estimates 
differed from their input values (Lee and Pollak, 
1997a).

Since the likelihood functions (6), (7), and (8) are 
highly nonlinear, there are no closed form solutions 
for variance components. Development of computing 
algoritlims for REML estimation of variance 
components has been a nontrivial task and a great 
concern (Harville, 1977; Harville and Callanan, 1990; 
Searle et 이., 1992). Various maximization methods are 
available, and these methods are typically divided into 
the three types: 1) methods using first and second 
derivatives of the likelihood, 2) methods using only 
first derivative, and 3) derivative free methods.

The standard method to maximize the likelihood is 
to use its first and second derivatives with respect to 
variance components (Patterson and Thompson, 1971; 
Thompson, 1973; Meyer, 1983; Searle et al., 1992). 
The representative gradient methods may be 
Ncwton-Raphson method and Fisher scoring (Press et 
시., 1992; Searle et al., 1992). Searle et al, (1992) 
described a general form of the various gradient 
methods to determine the search direction for the next 
step of iteration. The parameters are iteratively 
calculated as f이lowing:

户，f = 0如+ s 侦"읎牛声. ⑼

wh미e M is the multiplier matrix which modifies the 
step direction, and s is the scalar which modifies the 
step size. For the Newton-Raphson method, s=l and 
M=thc negative inversed Hessian matrix. For the 
Fisher Scoring method, 5=1 and M=the negative 
inversed expected information matrix. Replacing the
Hessian matrix in the Newton-Raphson algorithm by 
an approximation leads to a quasi-Newton method 
which does not require second derivatives. For details 
on quasi-Newton methods, see Kennedy and Gentle 
(1980). Johnson and Thompson (1995) proposed 
average information method with 5=1 and M=AI,

A 財,居)=."项? +E(— **)] [ 6g 0G j do ido j J

，'P 黑 p一쁘f， 
do i OGj

(10)

by addin응 the following second derivative of the log 
likelihood and its expected value:

糸K•어嘿嚅顷器嚅灼 ⑴) 

F驀汁 •쩌。旅嘿 (12)

where computation of the trace terms are much more 
complex than in first derivative of (13) below. For 
derivation of (11) and (12), see Searle et al. (1992). 
In order to solve the problems on convergence or on 
parameter boundary condition, the s and M can be 
replaced by other values (Meyer and Smith, 1996). 
For convergence problems, see Searle et al. (1992), 
Johnson and Thompson (1995), Gilmour et al. (1995), 
and Meyer and Smith (1996).

In order to reduce computational burdens, methods 
without second derivative were developed. First partial 
derivative of the restricted likelihood with respect to a 
variance component is shown below (Searle et al. 
1992):

아& 
do2i

= -.5心讖)+.5心" (13)

Equating the sets of derivative (9) to zeros leads to a 
simple REML algorithm (Harville, 1977; Searle, 1979). 
The estimates of genetic and environmental variances 
can be obtained using various methods such as the 
EM algorithm (Dempster et al., 1977; Searle et al., 
1992), the successive approximations (Henderson, 
1984), or the Broyden, Fletcher, Goldfarb, Shannos 
(BFGS) algorithm (for example, see Robinson (1988)). 
The most commo 미 y used method is the EM 
algorithm, but there is no unique EM algorithm. The 
following equations can be used for the iteration in 
the algorithm:

*/5)=[ »(脂7丁)+抒。4一七22(勺]&(14)

*,*i) = y，(y —X 0 — Z 사”、)Rn— rx)

where generalized inverse of the coefficient matrix in 
MME is equal to:

r xrR~[x x'r-^z r r- = r c11 c12i 门勺[ ZR~xX ZR~XZ+G~X \ c [ C21 C찌， ( A

and na is the number of levels of random effect. The 
inverse is approximated by many methods. Yet, 
recently various Monte Carlo methods received most 
attention (Garcia-Cortes ct al., 1992, 1995; Guo and 
Thompson, 1994; Groeneveld and Garcia-Cortes, 1998). 
The EM algorithm accommodates the boundary 
conditions on the REML parameter estimates while 
many other methods may lead to nonpositive definite 
covariance matrices. For details on the methods for 
getting constrained estimates, see Harville (1977). In 
the EM algorithm, convergence rate is slow. In order 
to overcome the problem, acceleration methods (Laird 
ct al., 1987; Mantysaari and Van Vleck, 1989; Misztal 
et al., 1992) or reparameterizations (Thompson and 
Meyer, 1986) are incorporated. For more details on 
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EM algorithm, see Quaas (1991) and Searle et al. 
(1992).

The final category to maximize the restricted 
likelihood does not require any derivatives, so called 
derivative free REML (Smith and Graser, 1986; Graser 
ct al., 1987). It requires much longer times to 
compute the likelihood than the other methods to 
search for its maximum directly. In the log restricted 
likelihood (8), the computationally demanding terms 
arc log|C| and yyPy which can be obtained by 
Gaussian elimination (Smith and Graser, 1986). Meyer 
(1988, 1989 and 1991) incorporated the method and 
simplex method (Nelder and Mead, 1965) into her 
masterpiece program, DFREML, in which variance 
components can be estimated with various animal 
models. Boldman and Van Vleck (1991) computed 
log|C| and y'Py using Choleski factorization with 
sparse matrix routines in SPARSPAK of George et al. 
(1980). Boldman et al. (1995) incorporated the method 
and simplex method into a package program, 
MTDFREML. For details on the simplex method or 
other methods for direct research of the maximum of 
the restricted likelihood, see Press et al. (1992) and 
Boldman et al. (1995). The derivative free approach 
costs less computing time than the EM approach for 
the small number of parameters, but more for the 
large number (Misztal, 1994; Johnson and Thompson, 
1995).

GIBBS SAMP니NG

Harville (1977) gave a review on Bayesian 
inference for variance components, and Gianola and 
Fernando (1986) brought Bayesian methods to animal 
brcediii흥. In the Bayesian approach, many methods are 
used for marginalization of the joint posterior density 
of variance components. In general, marginal posterior 
densities were approximated (e.g. Laplaces method 
(Tierney and Kadane (1986)) except for analytical 
integration with simple univariate models (Gianola et 
al., 1990). Dramatic development became feasible with 
a numerical method called Markov chain Monte Carlo 
(MCMC) procedures such as the Metropolis-Hastings 
algorithm (Metropolis et al., 1953; Hastings, 1970) and 
Gibbs sampling (Geman and Goman, 1984; Gelfand 
and Smith, 1990; Gelfand et al., 1990; Casella and 
George, 1990; Tanner, 1996). The MCMC is not 
restricted in only Bayesian inference, and might be 
applied to likelihood inference if analytic procedures 
arc not available. For example, see Geyer and 
Thompson (1992) and Guo and Thompson (1994).

Full conditional posterior densities . have been 
derived for the application of Gibbs sampling to 
animal breeding by many researchers: Wang et al. 
(1993) for sire models, Lee and Pollak (1995) for 
sire-matcnial grandsire models, Wang et al. (1994) and 

Van Tassell et al. (1995) for animal models, Jensen et 
al. (1994) for maternal effect models, Van Tassell and 
Van Vleck (1996) for multivariate models, Sorenson et 
al. (1995) for threshold motels, and Thaller and 
Hoeschele (1996a, 1996b) for linkage analyses. In this 
section, Bayesian inferences for variance components 
and a Gibbs sampling procedure are briefly described 
in" a simple animal breeding context. For details on 
Bayesian and MCMC, see Bernardo and Smith (1994), 
Tanner (1996), Gilks ct al. (1996), and Lehmann and 
Casella (1996).

Bayesian inference using Gibbs sampler
The joint posterior density of unknowns in mixed 

models are formulated as:

力(6 , I y)^p(y I 6 ,以,力(6 ,払扌)(16) 

wliich consists of the likelihood and the joint prior 
density. For the latter, & u and cr2 are assumed to 
have Uniform, Normal, and inverted Gamma 
distributions respectively. Personal beliefs are included 
in the prior information, but improper prior leads 
improper posterior (Robert and Casella, 1996). 
Inference about variance component is based on the 
marginal posterior density:

力(/I顶)=f 力(3 ,孔y)d6血. (17)

Bayesian inference overcomes the problem on non- 
BLUP of breeding values when using REML variance 
component estimates. Bayesian approach always gives 
exact posterior densities of variance components while 
REML estimates have unknown distributions for small 
data sets (Gianola and Fernando, 1986). The optimum 
Bayes decision rule under quadratic loss is the 
posterior mean rather than the posterior mode. REML 
estimates are joint modes of all variance components 
rather than marginal modes which give a better 
approximation of the posterior mean (Gianola and 
Foulley, 1990).

The Gibbs sampler is a method of numerical 
integration that iteratively generates samples from the 
full conditional densities of all the unknowns as 
shown below:

1) set initial values for 用"，我 and
2) generate B and update B ；
3) generate u and update u\
4) generate (?(l and update (《搭

5) generate & and update (糸
6) repeat from 2) to 5) many times.

The samples obtained during the burn-in period 
where Gibbs sampling chain has not yet reached the
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equilibrium distribution are discarded. The samples 
during post bum-in period are kept only every k 
iterations to reduce the correlation between consecutive 
samples. Parameters with slow mixing (high lag 
correlation) may lead to convergence problems (Wang 
ct 시., 1993; Sorenson et al, 1995; Thaller and 
Hocschcle, 1996a, 1996b; Wang et al., 1997).
Therefore, cautions are needed for determining bum-in 
period and for calculating lag correlation (Raftery and 
Lewis, 1992; Gelman and Rubin, 1992; Cowles and 
Carlin, 1996). The tool for determining bum-in period 
is often called convergence diagnostics. One of the 
convergence diagnostics is to monitor an arbitrary 
function of the Monte Carlo output. However, the 
method can mislead since the convergence of 
monitored function does not guarantee convergence of 
other unmonitored functions. Another convergence 
diagnostics is to run multiple chains. Each chain may 
be converged, but comparing the multiple chains may 
show clear differences in the apparent stationary 
distributions. However, computing costs too much.

As a point estimate, the posterior mean estimate of 
variance component can ■ be calculated based on the 
expected value of inverted Gamma variables:

e(4issa)=-

SS4 , 1 
丁 F

끙
and

顼顔SSE) = -
SSE , 1F F 

气 + 4 - 1
(18)

where 匕,(匕)is the scale parameter of inverted Gamma 
distribution for 求(那，以厲 is the shape parameter 
of inverted Gamma distribution for 就(片)，SAA = 
ufA'lu, and SEE=(y-X"-N")'(y-X”~ZZ). Computing 
packages are available for Gibbs sampling algorithm: 
MTGSAM by Van Tassell and Van Vleck (1996) and 
VCE by Groeneveld and Garcia-Cortes (1998). Gibbs 
sampling is an increasin이y useful tool for variance 
component estimation not only with mixed models but 
also with beyond mixed models such as threshold 
models of Gianola and Foulley (1983) and Harville 
and Mce (1984), survival models of Smith and Quaas 
(1984) and Ducrocq et al. (1988), major gene models 
of Hocschele (1988), and Bernoulli and Poisson 
mod이s of Foulley et al. (1987).

METHOD R

Reverter et al. (1994) developed Method R as an 
algorithm to estimate variance components without 
inversion of the coefficient matrix or its approxi­
mation. In the method R, the regression coefficient is 

defined as:

Rc=
八，”—] u jA Uj-_

(19)

where uj and u}- are the predictors in the analysis 
j and j，Qvj'). If the regression coefficient is not 
equal to 1, variance components are over- or 
underestimated. Iteration strategies allow the estimates 
to be converged (Reverter et al., 1994). Although 
robust statistical theory to assess the properties of 
Method R estimates is not yet available, they are 
empirically unbiased (Reverter et al., 1994) and the 
confidence intervals for heritability are reliable 
(Mallinckrodt et al., 1997).

VARIANCE COMPONENT ESTIMATION WITH 
NON니NEAR MODELS

Mixed models were combined with Nelder and 
Wedderbums (1972) generalized linear models (GLM) 
where observations have the distributions of 
exponential families, and systematic effects are 
monotonically linked to the mean. The combined 
models are called generalized linear mixed models 
(GLMM) and have the combined properties of both. 
This class of models includes various models 
developed in animal breeding. For example, threshold 
mixed models (Gianola and Foulley, 1983; Harville 
and Mee, 1984), survival mixed models (Smith and 
Quaas, 1984; Ducrocq et al., 1988), and Bernoulli and 
Poisson mixed models (Foulley et al., 1987) can be 
categorized as GLMM. This section briefly gives a 
frequentist approach for variance component estimation 
with GLMM. For details on GLM and GLMM, see 
McCullagh and Nelder (1989) and Breslow and 
Clayton (1993) respectively.

Generalized linear mixed models
A general formulation of GLMM can be expressed 

as a two-stage hierarchical model. In the first stage, 
the conditional density for given u has a distribution 
of the exponential family:

A,I “(M 阳 6,= exp [ 列 Z( 히丄 + c( 乂 ©)} (20)

where a, b, c are known functions and 0 is a vector 
of dispersion parameters. The canonical parameter (〃) 
is

有=尻8+扌泓 (21)

where x ；is the i，h row of X, and Z,- is the i山 row of 
Z. In the second stage, the density function for u is 
assumed as 忧 ~N(0,G). In this class of models, the 
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likelihood,
n

L( 奴 Gy) = f f JL £,. (山, 8, ©)丿：( 이G)d8出 (22) 
、，、’ i — 1

is hardly obtained in closed, form due to high 
dimensional integrals. Various methods were suggested 
to avoid the problem. As an example, maximum 
adj 니 sted profile hierarchical likelihood estimation 
(MAPHLE), which does not require approximations, is 
presented. For details on other methods, see Breslow 
and Clayton (1993) for penalized quasi-likelihood, 
McCulloch (1994) for simulation-based method, 
Tempel man and Gianola (1993) for Laplace 
approximation, and Sorenson et al. (1995) for Gibbs 
sampling.

Maximum adjusted profile hierarchical likelihood 
estimation
The hierarchical likelihood is defined as addition of 
logaritlnns of the density functions,

人.传(이以,8,©) and 丿;(시 G), in the two stages 
above:

h,= /(〃', ©I기 以) + 八시以).

Adjusted profile hierarchical likelihood is defined as 
(Cox and Reid, 1987; Lee and N이der, 1996):

、=4 + .51照{加(2泌上厂')}|

where H is the expected Hessian matrix,

H=( XfWX X'双)
—I Z'応 ZWZ+Ul"

W is the GLM weight function (McCullagh and 
Nelder, 1989), and U=- 0 { 8*g\u)/ 8 ui 8 uj. Lee 
(1998) developed MAPHLE for Poisson GLMM in 
animal breeding. The Newton-Raphson method was 
applied to maximizing the likelihood. The MAPHLE is 
an expansion of REML to nonlinear models. The 
MAPHLE is justified by method of moments.

CLOSING REMARKS

Intensive computing (e.g., for Gibbs sampling) 
became feasible through availability of powerful 
computers, and advances in the efficiency of 
computing algorithms made possible the incieasin이y 
complex models, e.g., GLMM presented in the 
previous section, log-linear structural models of San 
Cristobal et al. (1993), models with non-normal 
random effects (Lee and Lee, 1998), and multistage 
hierarchical models. Computing time can be reduced 
not only -by determining an efficient variance 

component estimation method but also by using 
various techniques such as sparse ' matrix routines 
(SPARSPAK of George et al. (1980) and FSPAK of 
Misztal (1990)), reduced animal models (Quaas and 
Pollak, 1980), transformation especially in multiple trait 
analysis (Jensen and Mao, 1988; Misztal et al., 1995; 
Ducrocq and Chapuis, 1997), and reparameterization 
(Thompson and Meyer, 1986; Harville and Callanan, 
1990; Groeneveld, 1994). Further impressive progress 
on efficient computing algorithms is important for 
estimation, of variance components with computationally 
demanding methods.

However, cautions with the methods should be 
stressed. For the Bayesian approach, many animal 
breeders used flat priors for variance components 
because the mode of the marginal posterior density 
with the priors corresponds to REML estimator 
(Harville, 1977). However, theoretically improper 
posterior is obtained (Robert and Casella,t 1996). As 
discussed earlier, care on the convergence of Gibbs 
sampling chain is also needed. For the class of 
GLMM, the joint maximization of the likelihood led 
to lack of the two desirable statistical properties: 
consistency and invariance (McCulloch and Feng, 
1996).
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