• Title/Summary/Keyword: vanishing theorem

Search Result 23, Processing Time 0.019 seconds

Smooth structures on symplectic 4-manifolds with finite fundamental groups

  • Cho, Yong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.619-629
    • /
    • 1996
  • In studying smooth 4-manifolds the Donaldson invariant has played a central role. In [D1] Donaldson showed that non-vanishing Donaldson invariant of a smooth closed oriented 4-manifold X gives rise to the indecomposability of X. For instance, the complex algebraic suface X cannot decompose to a connected sum $X_1 #X_2$ with both $b_2^+(X_i) > 0$.

  • PDF

FINITENESS AND VANISHING RESULTS ON HYPERSURFACES WITH FINITE INDEX IN ℝn+1: A REVISION

  • Van Duc, Nguyen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.709-723
    • /
    • 2022
  • In this note, we revise some vanishing and finiteness results on hypersurfaces with finite index in ℝn+1. When the hypersurface is stable minimal, we show that there is no nontrivial L2p harmonic 1-form for some p. The our range of p is better than those in [7]. With the same range of p, we also give finiteness results on minimal hypersurfaces with finite index.

VANISHING PROPERTIES OF p-HARMONIC ℓ-FORMS ON RIEMANNIAN MANIFOLDS

  • Nguyen, Thac Dung;Pham, Trong Tien
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1103-1129
    • /
    • 2018
  • In this paper, we show several vanishing type theorems for p-harmonic ${\ell}$-forms on Riemannian manifolds ($p{\geq}2$). First of all, we consider complete non-compact immersed submanifolds $M^n$ of $N^{n+m}$ with flat normal bundle, we prove that any p-harmonic ${\ell}$-form on M is trivial if N has pure curvature tensor and M satisfies some geometric conditions. Then, we obtain a vanishing theorem on Riemannian manifolds with a weighted $Poincar{\acute{e}}$ inequality. Final, we investigate complete simply connected, locally conformally flat Riemannian manifolds M and point out that there is no nontrivial p-harmonic ${\ell}$-form on M provided that the Ricci curvature has suitable bound.

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF INVARIANT (α1, α2)-METRICS ON SPHERES

  • Huihui, An;Zaili, Yan;Shaoxiang, Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.33-46
    • /
    • 2023
  • Geodesic orbit spaces are homogeneous Finsler spaces whose geodesics are all orbits of one-parameter subgroups of isometries. Such Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov volume comparison theorem. In this paper, we obtain a complete description of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it is Sp(n + 1)Sp(1)-invariant. As an interesting consequence, we find infinitely many Finsler spheres with vanishing S-curvature which are not geodesic orbit spaces.

ON THE ADJOINT LINEAR SYSTEM

  • Kwan, Shin-Dong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.15-23
    • /
    • 1994
  • Throughout this paper, we are working on the complex number field C. The aim of this paper is to explain the applications of Theorem 2 in .cint. 1. In the surface theory, the adjoint linear system has played important roles and many tools have been developed to understand it. In the cases of higher dimensional varieties, we don't have any useful tools so far. Theorem 2 implies that it is enough to compute the dimension of the adjoint linear system to check the birationality. We can compute, somehow, the dimension of the adjoint linear system. For example, we can get an information about $h^{0}$ (X, $O_{x}$( $K_{x}$ + D)) from Euler characteristic of vertical bar $K_{X}$ + D vertical bar and some vanishing theorems. We are going to show the applications of Theorem 2 to smooth three-folds and smooth fourfold, specially, of general type with a nef canonical divisor, smooth Fano variety, and Calabi-Yau manifold. Our main results are Theorem A and Theorem B. Most of birationality problems in Theorem A and Theorem B have been studied. (see Ando [1] and Matsuki [4] for the detail matters.) But Theorem 2 gives short and easy proofs in the cases of dimension 3 and improves the previously known results in the cases of dimension 4.4. 4.4.

  • PDF

ON FINSLER METRICS OF CONSTANT S-CURVATURE

  • Mo, Xiaohuan;Wang, Xiaoyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.639-648
    • /
    • 2013
  • In this paper, we study Finsler metrics of constant S-curvature. First we produce infinitely many Randers metrics with non-zero (constant) S-curvature which have vanishing H-curvature. They are counterexamples to Theorem 1.2 in [20]. Then we show that the existence of (${\alpha}$, ${\beta}$)-metrics with arbitrary constant S-curvature in each dimension which is not Randers type by extending Li-Shen' construction.

SCREEN CONFORMAL EINSTEIN LIGHTLIKE HYPERSURFACES OF A LORENTZIAN SPACE FORM

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.225-234
    • /
    • 2010
  • In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for Einstein lightlike hypersurfaces M of a Lorentzian space form subject such that the second fundamental forms of M and its screen distribution S(TM) are conformally related by some non-vanishing smooth function.

History of Transcendental numbers and Open Problems (초월수의 역사와 미해결 문제)

  • Park, Choon-Sung;Ahn, Soo-Yeop
    • Journal for History of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.57-73
    • /
    • 2010
  • Transcendental numbers are important in the history of mathematics because their study provided that circle squaring, one of the geometric problems of antiquity that had baffled mathematicians for more than 2000 years was insoluble. Liouville established in 1844 that transcendental numbers exist. In 1874, Cantor published his first proof of the existence of transcendentals in article [10]. Louville's theorem basically can be used to prove the existence of Transcendental number as well as produce a class of transcendental numbers. The number e was proved to be transcendental by Hermite in 1873, and $\pi$ by Lindemann in 1882. In 1934, Gelfond published a complete solution to the entire seventh problem of Hilbert. Within six weeks, Schneider found another independent solution. In 1966, A. Baker established the generalization of the Gelfond-Schneider theorem. He proved that any non-vanishing linear combination of logarithms of algebraic numbers with algebraic coefficients is transcendental. This study aims to examine the concept and development of transcendental numbers and to present students with its open problems promoting a research on it any further.