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ON FINSLER METRICS OF CONSTANT S-CURVATURE

Xiaohuan Mo and Xiaoyang Wang

Abstract. In this paper, we study Finsler metrics of constant S-curva-
ture. First we produce infinitely many Randers metrics with non-zero
(constant) S-curvature which have vanishing H-curvature. They are
counterexamples to Theorem 1.2 in [20]. Then we show that the existence
of (α, β)-metrics with arbitrary constant S-curvature in each dimension
which is not Randers type by extending Li-Shen’ construction.

1. Introduction

The S-curvature is one of most important non-Riemannian quantities in
Finsler geometry [15]. It vanishes on a Riemannian manifold. So we call it
non-Riemannian quantity.

In fact, all Berwald manifolds have zero S-curvature [15]. Locally Minkowski
manifolds and Riemannian manifolds are all Berwald manifolds.

An n-dimensional Finsler metric F on a manifold M is said to have constant
S-curvature if S(x, y) = (n + 1)cF (x, y) for some constant c. For example,
the following Finsler metric F on the unit ball has constant S-curvature S =
± 1

2
(n+ 1)F ,

F =

√

|y|2 − (|x|2|y|2 − 〈x, y〉2)
1− |x|2 ± 〈x, y〉

1− |x|2 ± 〈a, y〉
1 + 〈a, x〉 , y ∈ TxR

n,

where a ∈ R
n is a constant vector with |a| < 1 [3, 16]. Randers metric of

constant flag curvature (or R-quadratic [8]) is of constant S-curvature [2]. Re-
cently, S. Ohta shows that a Randers space (M, F ) admits a measure m with
S ≡ 0 if and only if β is a Killing form of constant length [13]. Shen and Mo-Yu
established some global rigidity theorems for Finsler manifolds with constant
S-curvature [18, 11].

The aim of this paper is to study a special class of Finsler metrics −(α, β)-

metrics of constant S-curvature. Finsler metrics in the form F := αφ(β
α
)

are called (α, β)-metrics (for definition, see Section 2). In particular, when
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φ(s) = 1 + s, F = α+ β is called a Randers metrics [14]. We first produce in-
finitely many Randers metrics with non-zero (constant) S-curvature which have
vanishing H-curvature (see Theorem 5.1). They are counterexamples to Theo-
rem 1.2 in [20]. Note that H-curvature is another interesting non-Riemannian
quantity and it is obtained from the mean Berwald curvature by the covariant
horizontal differentiation along geodesics. Meanwhile Theorem 5.1 means that
there exists a Randers metric of any constant S-curvature in each dimension.
After noting this interesting fact, we investigate the existence of non-Randers
(α, β)-metrics with arbitrary constant S-curvature. By extending Li-Shen’
construction [7] we prove the following:

Theorem 1.1. For arbitrary real number k and arbitrary natural number n,
there exists an (α, β)-metric F defined on an open subset in R

n which is not

Randers type such that F has constant S-curvature k.

The above theorem tells us that Finsler metrics of constant S-curvature form
a rich class of Finsler metrics. For interesting results of H-curvature, we refer
the reader to [9, 12, 19].

2. Preliminaries

A Finsler metric is a Riemannian metric without quadratic restriction. Pre-
cisely, a function F (x, y) on TM is called a Finsler metric on a manifold M if
it has the following properties:

(a) F (x, y) is C∞ on TM\{0};
(b) Fx(y) := F (x, y) is a Minkowski norm on TxM for any x ∈M .
Define the (mean) distortion τ : SM → R by [15]

τ(x, [y]) := ln

√

det (gij(y))

σ(x)
,

where SM is the projective sphere bundle of M , obtained from TM by identi-
fying non-zero vectors which differ from each other by a positive multiplicative
factor and

σ(x) =
Vol (Bn)

Vol {(yi) ∈ Rn|F (x, yi ∂
∂xi ) < 1}

,

where Bn denotes the unit ball in R
n and Vol denotes the Euclidean measure

on R
n. To measure the rate of changes of the distortion along geodesics, we

define

S(x, y) :=
d

dt
[τ(ċ(t))]t=0,

where c(t) is the geodesic with ċ(0) = y. We call the scalar function S the
S-curvature. S is said to be isotropic if there is a scalar function c(x) on M
such that

S(x, y) = (n+ 1)c(x)F (x, y).

In particular, S is said to be of constant c if c = constant.
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In [10], the authors constructed many new examples of Finsler manifolds of
isotropic S-curvature.

Let α =
√

aij(x)yiyj be a Riemannian metric and β = bi(x)y
i be a 1-form

on a manifold M . Consider the following function

(2.1) F := αφ(s), s =
β

α
,

where φ = φ(s) is a positive C∞ function on [−r, r] satisfying
φ(s)− sφ′(s) > 0, φ′′(s) > 0, |s| ≤ r.

Then F is a Finsler metric if ‖βx‖α ≤ r for any x ∈ M [17]. A Finsler metric
in the form (2.1) is called an (α, β)-metric.

Let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i),

ri := rijb
j , si := sijb

j ,

where bi|j denote covariant derivative of β with respect to α.
For a positive C∞ function φ = φ(s) on [−r, r] and a number b ∈ [0, r], let

(2.2) Φ := −(Q− sQ′)(n∆+ 1 + sQ)− (b2 − s2)(1 + sQ)Q′′,

where

(2.3) ∆ := 1 + sQ+ (b2 − s2)Q′, Q :=
φ′

φ− sφ′
.

Recently, Cheng-Shen proved the following [4]:

Theorem 2.1. Let F = αφ(s), s = β
α
, be an (α, β)-metric on a manifold

and b := ‖βx‖α. Suppose that φ is not Randers type. Then F is of isotropic

S-curvature if and only if one of the following holds

(i) β satisfies

rj + sj = 0

and φ = φ(s) satisfies

Φ = 0.

In this case, S = 0.
(ii) β satisfies

(2.4) rij = ǫ(b2aij − bibj), sj = 0,

where ǫ = ǫ(x) is a scalar function, and φ = φ(s) satisfies

(2.5) Φ = −2(n+ 1)k
φ∆2

b2 − s2
,

where k is a constant. In this case, S = (n+ 1)cF with c = kǫ.
(iii) β satisfies

rij = 0, sj = 0.

In this case, S = 0, regardless of the choice of a particular φ.
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By using Theorem 2.1, we will show that the existence of (α, β)-metrics with
arbitrary constant S-curvature in each dimension which is not Randers type in
Section 4. We are going to simplify the equation (2.5) in the next section.

The H-curvature Hy = Hijdx
i ⊗ dxj is defined by Hij = Eij|ky

k where “ | ”
denote the covariant horizontal derivatives and Eij denote the mean Berwald
curvature of F [9, 12].

3. Third order nonlinear ODE

In this section we are going to give the normal type of (2.5).

Lemma 3.1. Let ψ := φ− sφ′. Then we have

(3.1) 1 + sQ =
φ

ψ
,

(3.2) Q =
φ′

ψ
,

(3.3) Q′ =
φφ′′

ψ2
,

(3.4) Q′′ =
1

ψ3

[

(φ′φ′′ + φφ′′′)ψ + 2sφ(φ′′)2
]

,

where Q is given in (2.3).

Proof. (3.2) is obvious. By using (3.2) we obtain

1 + sQ = 1 + s
φ′

ψ
=

1

ψ
(ψ + sφ′) =

φ

ψ
.

This gives (3.1). From the definition of ψ, ones get ψ′ = −sφ′′. Together with
(3.2) we get

Q′ =
φ′′ψ − φ′ψ′

ψ2
=
φ′′(φ − sφ′)− φ′(−sφ′′)

ψ2
=
φφ′′

ψ2

which implies (3.3). By a similar calculation, we get

Q′′ =
(φ′φ′′ + φφ′′′)ψ2 − 2φφ′′ψψ′

ψ4
=

1

ψ3

[

(φ′φ′′ + φφ′′′)ψ + 2sφ(φ′′)2
]

.
�

Lemma 3.2. We have the following

(3.5) ∆ = φ · ψ + (b2 − s2)φ′′

ψ2
,

(3.6) Q− sQ′ =
φφ′ − s(φ′2 + φφ′′)

ψ2
,

(3.7) n∆+ 1 + sQ =
φ

ψ

(

n+ 1 + nφ′′
b2 − s2

ψ

)

.
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Proof. By using (2.3), (3.1) and (3.3) we have

∆ = 1 + sQ+ (b2 − s2)Q′ =
φ

ψ
+ (b2 − s2)

φφ′′

ψ2
= φ · ψ + (b2 − s2)φ′′

ψ2
.

From (3.2), (3.3) and the definition of ψ, we get

Q− sQ′ =
φ′

ψ
− s

φφ′′

ψ2
=
φ′(φ− sφ′)− sφφ′′

ψ2
=
φφ′ − s(φ′2 + φφ′′)

ψ2
.

Finally, we have

n∆+ 1 + sQ = nφ
ψ + (b2 − s2)φ′′

ψ2
+
φ

ψ

=
φ

ψ

[

n
ψ + (b2 − s2)φ′′

ψ2
+ 1

]

=
φ

ψ

(

n+ 1 + nφ′′
b2 − s2

ψ

)

from (3.1) and (3.5). �

Lemma 3.3. Equation (2.2) can be rewritten as follows:

(3.8)

Φ = − φ

ψ4

[

φφ′ − s(φ′2 + φφ′′)
] [

(n+ 1)ψ + nφ′′(b2 − s2)
]

− φ

ψ4
(b2 − s2)

[

(φ′φ′′ + φφ′′′)ψ + 2sφ(φ′′)2
]

.

Proof. Substituting (3.6), (3.7), (3.1) and (3.4) into (2.2) we have (3.8). �

Lemma 3.4. Equation (2.5) is equivalent to

(3.9)

2k(n+ 1)φ2
[

(b2 − s2)φ′′2 + 2ψφ′′ +
ψ2

b2 − s2

]

=
[

φφ′ − s(φ′2 + φφ′′)
] [

(n+ 1)ψ + nφ′′(b2 − s2)
]

+ (b2 − s2)
[

(φ′φ′′ + φφ′′′)ψ + 2sφ(φ′′)2
]

.

Proof. Plugging (3.5) and (3.8) into (2.5) yields (3.9). �

From Lemma 3.4 we immediately obtain the following:

Lemma 3.5. Equation (3.9) is equivalent to the following normal ODE:

(3.10)
φ′′′ = 2k(n+ 1)φ

[

φ′′2

ψ
+

2φ′′

b2 − s2
+

ψ

(b2 − s2)2

]

− φ′φ′′

φ
− 2sφ′′2

ψ

−
(

nφ′′

ψ
+

n+ 1

b2 − s2

)[

φ′ − s

(

φ′2

φ
+ φ′′

)]

.

Remark. It is easy to see that φ = k1
√
1 + k2s2 + k3s (it corresponds the

Randers metrics) are not the solution of (3.10).
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4. Proof of Theorem 1.1

Now we are going to construct Riemannian metric α and 1-form β satisfy
(2.4) with ǫ = constant. If, at a point x = (x1, . . . , xn) ∈ R

n and in the
direction y = (y1, . . . , yn) ∈ TxR

n, Riemannian metric α = α(x, y) and one
form β = β(x, y) are given by

(4.1) α :=
√

(y1)2 + e2x1 [(y2)2 + · · ·+ (yn)2], β := y1.

Then

(4.2) (aij) =









1 0 · · · 0

0 e2x
1 · · · 0

· · · · · ·
0 0 · · · e2x

1









,

(4.3) b1 = 1, b2 = · · · = bn = 0,

where α2 = aijy
iyj and β = biy

i. It follows that

(4.4) (aij) =









1 0 · · · 0

0 e−2x1 · · · 0
· · · · · ·
0 0 · · · e−2x1









.

By using (4.3) and (4.4), we obtain

(4.5) b =
√

aijbibj =
√

a11b2
1
= 1.

From (4.3) we have
∂bi
∂xj

= 0.

It follows that the covariant derivatives of β with respect to α are given by

bi|j =
∂bi
∂xj

− bkΓ
k
ij = −bkΓk

ij = bj|i.

Together with (4.3) we get

(4.6) rij =
1

2
(bi|j + bj|i) = bi|j = −bkΓk

ij = −Γ1

ij

and sij =
1

2
(bi|j − bj|i) = 0. By (4.2) and (4.4), the Christoffel symbols of α are

given by

Γk
ij =

1

2
akl

(

∂ail
∂xj

+
∂ajl
∂xi

− ∂aij
∂xl

)

=
1

2
akk

(

∂aik
∂xj

+
∂ajk
∂xi

− ∂aij
∂xk

)

=







−e2x1

if i = j 6= k = 1,
1 if i = k 6= j = 1, j = k 6= i = 1,
0 others.
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Together with (4.2), (4.3), (4.5) and (4.6) we get

rij = b2aij − bibj =

{

e2x
1

if i = j = 2, . . . , n,
0 others.

Hence α and β satisfy

(4.7) rij = ǫ(b2aij − bibj), sj = 0

with ǫ = b = 1.

Remark. When n = 3, our construction have been studied by Li-Shen [7].

Now we are going to show the existence of regular solution of (2.5) for
arbitrary k ∈ R when α and β are given by (4.1).

Let k be an arbitrary constant. We consider the solution of (2.5). By Lemma
3.4 and Lemma 3.5, (2.5) is equivalent to 3-order nonlinear ODE (3.10). Put

φ0 := φ, φ1 := φ′, φ2 := φ′′.

One can express (3.10) in the following form

φ′0 := φ1, φ′1 := φ2,

(4.8)

φ′2 = 2k(n+ 1)φ0

[

φ22
φ0 − sφ1

+
2φ2

1− s2
+
φ0 − sφ1
(1 − s2)2

]

− φ1φ2
φ0

− 2sφ22
φ0 − sφ1

−
(

nφ2
φ0 − sφ1

+
n+ 1

1− s2

)[

φ1 − s

(

φ21
φ0

+ φ2

)]

:= f(s, φ0, φ1, φ2).

Let Ω := (−1, 1)× [N
2
, 3N

2
]× [0, 2ǫ]× [0, 2τ ] where N > 4ǫ. Then

(4.9) φ0 − sφ1 ≥ N

2
− 2ǫ > 0, φ2 ≥ 0

for (s, φ0, φ1, φ2) ∈ Ω. Consider the following 3th order system

(4.10) y′ = F (s, y),

where

(4.11) y =





φ0
φ1
φ2



 , F (s, φ0, φ1, φ2) =





φ1
φ2

f(s, φ0, φ1, φ2)



 .

From (4.8) and (4.11), we can expand F (s, φ0, φ1, φ2) into convergence power
series of s, φ0 − N, φ1 − ǫ and φ2 − τ . By using the Cauchy theorem, there
exists an analytic solution y∗(s), defined uniquely in Ω which satisfies y∗(0) =
(N, ǫ, τ) (cf. [6]). Put

y∗(s) =





φ∗0(s)
φ∗1(s)
φ∗2(s)



 .
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Then φ∗(s) := φ∗0(s) is an analytic solution of (2.5), which is defined in (−1, 1)
and satisfies φ∗(0) = N . Note that

φ∗′(s) = φ∗1(s), φ∗′′(s) = φ∗2(s)

we get (s, φ∗(s), φ∗′(s), φ∗′′(s)) ∈ Ω. Together with (4.11) we obtain

φ∗(s)− sφ∗′(s) > 0, φ∗′′(s) ≥ 0, |s| < 1.

It follows that αφ∗(β/α) is an (α, β)-metric where α and β is defined in (4.1).
Together with (4.7) and Theorem 2.1 ones get αφ∗(β/α) is an (α, β)-metric
with constant S-curvature k which is not Randers type.

5. Counterexamples to Tang’s Theorem 1.2

In this section, we are going to manufacture Randers metrics with non-zero
S-curvature which have zero H-curvature. For a Finsler manifold (M, F ),
the flag curvature is a function K(P, y) of tangent planes P ⊂ TxM and
directions y ∈ P . F is said to be of scalar curvature if the flag curvature
K(P, y) = K(x, y) is independent of flags P associated with any fixed flagpole
y [5]. In particular, F is said to be of constant flag curvature if the flag curvature
K(P, y) = constant [16]. By a basic result of Arbar-Zadeh [1, 12] for a Finsler
metric of scalar flag curvature, the flag curvature is constant on the manifold
if and only if H = 0.

Theorem 5.1. Let h = |y| be the Euclidean metric on R
n, and V be a vector

field on R
n given by

Vx := −2cx+ xQ + b,

where c is a constant, Q is a skew-symmetric matrix and b is a constant vector

with |b| < 1. Then Finsler metric F is determined by

F (x, y) = h(x, y − F (x, y)Vx)

is a Randers metric which has the following non-Riemannian curvature propert-

ies:
(a) vanishing H-curvature

H = 0.

(b) constant S-curvature

S(x, y) = (n+ 1)cF (x, y).

Proof. (b) is an immediate conclusion of Theorem 7.3.8 in [5]. On the other
hand, Chern-Shen’ result tells us F has constant flag curvature. Combining
this with Arbar-Zadeh’ result yields (a). �

Let us take a look at the special case when c 6= 0, F is a Randers metric
with non-zero S-curvature which have zero H-curvature. Thus F is a coun-
terexample to Theorem 1.2 in [20].
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Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 10, 281–322.

[2] D. Bao, C. Robles, and Z. Shen, Zermelo navigation on Riemannian manifolds, J.
Differential Geom. 66 (2004), no. 3, 377–435.

[3] X. Chen and Z. Shen, Randers metrics with special curvature properties, Osaka J. Math.
40 (2003), no. 1, 87–101.

[4] , A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169

(2009), 317–340.
[5] S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific Publishers, 2005.
[6] T. Ding and C. Li, Lecture on Ordinary Differential Equations, Second Edition, Higher

Eduction Press, 2004.
[7] B. Li and Z. Shen, On a class of weak Landsberg metrics, Sci. China Ser. A 50 (2007),

no. 4, 573–589.
[8] , On Randers metrics of quadratic Riemann curvature, Internat. J. Math. 20

(2009), no. 3, 369–376.
[9] X. Mo, On the non-Riemannian quantity H for a Finsler metric, Differential Geom.

Appl. 27 (2009), no. 1, 7–14.
[10] X. Mo and C. Yang, The explicit construction of Finsler metrics with special curvature

properties, Differential Geom. Appl. 24 (2006), no. 2, 119–129.
[11] X. Mo and C. Yu, On the Ricci curvature of a Randers metric of isotropic S-curvature,

Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 6, 911–916.
[12] B. Najafi, Z. Shen, and A. Tayebi, Finsler metrics of scalar flag curvature with special

non-Riemannian curvature properties, Geom. Dedicata 131 (2008), 87–97.
[13] S. Ohta, Vanishing S-curvature of Randers spaces, Differential Geom. Appl. 29 (2011),

no. 2, 174–178.
[14] G. Randers, On an asymmetric metric in the four-space of general relatively, Phys. Rev.

59 (1941), 195–199.
[15] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry. Adv.

Math. 128 (1997), no. 2, 306–328.
[16] , Projectively flat Randers metrics with constant flag curvature, Math. Ann. 325

(2003), no. 1, 19–30.
[17] , Landsberg curvature, S-curvature and Riemann curvature, A sampler of

Riemann-Finsler geometry, 303-355, Math. Sci. Res. Inst. Publ., 50, Cambridge Univ.
Press, Cambridge, 2004.

[18] , Finsler manifolds with nonpositive flag curvature and constant S-curvature,
Math. Z. 249 (2005), no. 3, 625–639.

[19] , On some non-Riemannian quantities in Finsler geometry, Cana. Math. Bull.
56 (2013), 184–193.

[20] D. Tang, On the non-Riemannian quantity H in Finsler geometry, Differential Geom.
Appl. 29 (2011), no. 2, 207–213.

Xiaohuan Mo

Key Laboratory of Pure and Applied Mathematics

School of Mathematical Sciences

Peking University

Beijing, 100871, P. R. China

E-mail address: moxh@pku.edu.cn



648 XIAOHUAN MO AND XIAOYANG WANG

Xiaoyang Wang

School of Mathematical Sciences

Beijing Institute of Technology

Beijing 100081, P. R. China

E-mail address: wxy314159@126.com


