• Title/Summary/Keyword: unmanned robot

Search Result 209, Processing Time 0.022 seconds

Development of Power System for the Tilt-duct VTOL Aerial Robot (틸트-덕트 수직이착륙 비행로봇의 동력계통 개발)

  • Chang, Sung-Ho;Cho, Am;Lee, Chi-Hoon;Choi, Seong-Wook
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • Power system of the tilt-duct VTOL aerial robot has been developed. This paper focuses on the power train with small liquid-type engine for the R/C boat and presents the test results with design procedures. The hardware aspects of the power system include details about the hardware configurations for the interfaces with the vehicle. The ground test and tether test for measuring the thrust performance of vehicle and evaluating the endurance of power train carried out.

Clearance Depth Control for the Non-explosive Demining System of a Tracked Mobile Robot (비폭파식 지뢰제거 무한궤도형 주행 로봇의 작업 깊이 제어)

  • Jeong Hae Kwan;Choi Hyun Do;Kim Sang Do;Kwak Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.155-161
    • /
    • 2005
  • Up to now, a lot of unmanned demining systems have been developed. However, some inferiority surely exist by reason of their large platform and explosive mechanism. To settle this inferiority, non-explosive demining system adaptable to a mobile robot already has been developed. Brief experiment indoors showed that developed demining system can remove landmines well. But, out of doors, several problems are detected. In this research, a study on the performance improvement of developed non-explosive demining system is mainly discussed. To overcome downhill effect, mechanical sensor composed of shaft and spring is used. It is confirmed that clearance depth control using the mechanical sensor is a good solution for the inclination of the system.

On Safety Improvement through Process Establishment for SOTIF Application of Autonomous Driving Logistics Robot

  • Choi, Kyoung Lak;Kim, Min Joong;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.209-218
    • /
    • 2022
  • Today, with the development of the Internet and mobile technology, consumers' purchasing patterns have shifted from offline to online. In addition, due to the recent COVID-19, online purchases have significantly increased, and accordingly, the courier industry for logistics delivery has also grown significantly. Various logistics robots are being operated in many industrial and can reduce the labor intensity and physical and mental fatigue of workers. However, if the logistics robot does not properly recognize the people or environment around it, it can lead to a serious accident. We conducted that how logistics robots can perform safe work in a working environment such as a logistics warehouse through the application of ISO/DIS 21448 (SOTIF) to autonomous logistics transport robots. This result is expected to contribute to the operation of unmanned logistics warehouses using AGV.

SPOT Robot Hardware and Software Performance Analysis for Autonomous and Unmanned Construction Site Management System (건설 현장 관리 자율 및 무인화 시스템을 위한 SPOT 로봇 하드웨어 및 소프트웨어 성능 분석)

  • Park, Bong-Jin;Kim, Do-Keun;Jang, Se-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.221-222
    • /
    • 2023
  • The purpose of this study is to analyze the applicability and limitations of SPOT robots in the construction industry. The SPOT robot, which is being introduced to construction sites for smart construction with the progress of the 4th industrial revolution, is shaped like a four-legged dog and is equipped with various sensors for data collection and autonomous driving. In this study, hardware and software were analyzed, such as the size of the SPOT robot, mobility on slopes and heights, operating environment, and software functions that can collect data with a sensor weighing up to 14 kg. In addition, while the SPOT robot operates in a construction environment, performance such as stability, accuracy, signal connection distance, and obstacle avoidance are evaluated, and the applicability and limitations of the SPOT robot in the construction industry are analyzed. Based on this analysis, the purpose of this study is to evaluate when and how SPOT robots can be effectively used at construction sites, identify limitations, and derive contributions and improvements for the construction industry.

  • PDF

Mission Oriented Global Path Generation for Unmanned Combat Vehicle Based on the Mission Type and Multiple Grid Maps (임무유형과 다중 격자지도 기반의 임무지향적 전역경로 생성 연구)

  • Lee, Ho-Joo;Lee, Young-Il;Lee, Myung-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a global path generation method is suggested using multiple grid maps connected with the mission type of unmanned combat vehicle(UCV). In order to carry out a mission for UCV, it is essential to find a global path which is coincident with the characteristics of the mission. This can be done by considering various combat circumstances represented as grid maps such as velocity map, threat map and communication map. Cost functions of multiple grid maps are linearly combined and normalized to them simultaneously for the path generation. The proposed method is realized using $A^*$, a well known search algorithm, and cost functions are normalized in the ratio of the traverse time which is one of critical information should be provided with the operators using the velocity map. By the experiments, it is checked found global paths match with the mission type by reflecting input data of grid maps properly and the computation time is short enough to regenerate paths in real time as combat circumstances change.

Study of a Leveling Mobile Platform for Take-off and Landing of Unmanned Aerial Vehicles (무인항공기 이착륙을 위한 수평 유지 이동 플랫폼)

  • Lee, Sangwoong;Kawk, Junyoung;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.85-92
    • /
    • 2020
  • Applications for the unmanned aerial vehicle (UAV) have expanded enormously in recent years. Of all its various technologies, the UAV's ability to take off and land in a moving environment is particularly required for military or oceanic usage. In this study, we develop a novel leveling platform that allows the UAV to stably take off and land even on uneven terrains or in moving environments. The leveling platform is composed of an upper pad and a lower mobile base. The upper pad, from which the UAV can take off or land, is designed in the form of a 2 degrees of freedom (DOF) gimbal mechanism that generates the leveling function. The lower mobile base has a four-wheel drive structure that can be operated remotely. We evaluate the developed leveling platform by performing extensive experiments on both the horizontal terrain and the 5-degree ramped terrain, and confirm that the leveling platform successfully maintains the horizontal pose on both terrains. This allows the UAV to stably take off and land in moving environments.

Autonomous Traveling of Unmanned Golf-Car using GPS and Vision system (GPS와 비전시스템을 이용한 무인 골프카의 자율주행)

  • Jung, Byeong Mook;Yeo, In-Joo;Cho, Che-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2009
  • Path tracking of unmanned vehicle is a basis of autonomous driving and navigation. For the path tracking, it is very important to find the exact position of a vehicle. GPS is used to get the position of vehicle and a direction sensor and a velocity sensor is used to compensate the position error of GPS. To detect path lines in a road image, the bird's eye view transform is employed, which makes it easy to design a lateral control algorithm simply than from the perspective view of image. Because the driving speed of vehicle should be decreased at a curved lane and crossroads, so we suggest the speed control algorithm used GPS and image data. The control algorithm is simulated and experimented from the basis of expert driver's knowledge data. In the experiments, the results show that bird's eye view transform are good for the steering control and a speed control algorithm also shows a stability in real driving.

Optimal Posture Control for Unmanned Bicycle (무인자전거 최적자세제어)

  • Yang, Ji-Hyuk;Lee, Sang-Yong;Kim, Seuk-Yun;Lee, Young-Sam;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1006-1013
    • /
    • 2011
  • In this paper, we propose an optimal posture control law for an unmanned bicycle by deriving linear bicycle model from fully nonlinear differential equations. We calculate each equilibrium point of a bicycle under any given turning radius and angular speed of rear wheel. There is only one equilibrium point when a bicycle goes straight, while there are a lot of equilibrium points in case of turning. We present an optimal equilibrium point which makes the leaning input minimum when a bicycle is turning. As human riders give rolling torque by moving center of gravity of a body, many previous studies use a movable mass to move center of gravity like humans do. Instead we propose a propeller as a new leaning input which generates rolling torque. The propeller thrust input makes bicycle model simpler and removes input magnitude constraint unlike a movable mass. The proposed controller can hold optimal equilibrium points using both steering input and leaning input. The simulation results on linear control for circular motion are demonstrated to show the validity of the proposed approach.

Predicting Maximum Traction for Improving Traversability of Unmanned Robots on Rough Terrain (무인 로봇의 효율적 야지 주행을 위한 최대 구동력 추정)

  • Kim, Ja-Young;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.940-946
    • /
    • 2012
  • This paper proposes a method to predict maximum traction for unmanned robots on rough terrain in order to improve traversability. For a traction prediction, we use a friction-slip model based on modified Brixius model derived empirically in terramechanics which is a function of mobility number $B_n$ and slip ratio S. A friction-slip model includes characteristics of various rough terrains where robots are operated such as soil, sandy soil and grass-covered soil. Using a friction-slip model, we build a prediction model for terrain parameters on which we can know maximum static friction and optimal slip with respect to mobility number $B_n$. In this paper, Mobility number $B_n$ is estimated by modified Willoughby Sinkage model which is a function of sinkage z and slip ratio S. Therefore, if sinkage z and slip ratio are measured once by sensors such as a laser sensor and a velocity sensor, then mobility number $B_n$ is estimated and maximum traction is predicted through a prediction model for terrain parameters. Estimation results for maximum traction are shown on simulation using MATLAB. Prediction Performance for maximum traction of various terrains is evaluated as high accuracy by analyzing estimation errors.

Autonomous Aero-Robot and Disaster Response

  • Inoue, Koichi;Nakanishi, Hiroaki
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.3-16
    • /
    • 2003
  • After a not-widely-known fact is revealed that Japan is a leading country in production and use of industrial unmanned helicopters, a kind of UAV. The voice command system and the autonomous flight control system with a variety of control algorithms including neural network, robust and adaptive control that have been developed in collaboration between Kyoto University and Yamaha Motor Co., and funded by the Ministry of Education and Science of Japan are described in some detail. Both already-proven and promising future applications of the autonomous unmanned helicopters are given.

  • PDF