• Title/Summary/Keyword: uniqueness theorem

Search Result 137, Processing Time 0.024 seconds

Existence of Solutions for the Impulsive Semilinear Fuzzy Intergrodifferential Equations with Nonlocal Conditions and Forcing Term with Memory in n-dimensional Fuzzy Vector Space(ENn, dε)

  • Kwun, Young-Chel;Kim, Jeong-Soon;Hwang, Jin-Soo;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • In this paper, we study the existence and uniqueness of solutions for the impulsive semilinear fuzzy integrodifferential equations with nonlocal conditions and forcing term with memory in n-dimensional fuzzy vector space ($E^n_N$, $d_{\varepsilon}$) by using Banach fixed point theorem. That is an extension of the result of Kwun et al. [9] to impulsive system.

MULTIDIMENSIONAL BSDES WITH UNIFORMLY CONTINUOUS GENERATORS AND GENERAL TIME INTERVALS

  • Fan, Shengjun;Wang, Yanbin;Xiao, Lishun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.483-504
    • /
    • 2015
  • This paper is devoted to solving a multidimensional backward stochastic differential equation with a general time interval, where the generator is uniformly continuous in (y, z) non-uniformly with respect to t. By establishing some results on deterministic backward differential equations with general time intervals, and by virtue of Girsanov's theorem and convolution technique, we prove a new existence and uniqueness result for solutions of this kind of backward stochastic differential equations, which extends the results of [8] and [6] to the general time interval case.

LOCAL CONVERGENCE OF FUNCTIONAL ITERATIONS FOR SOLVING A QUADRATIC MATRIX EQUATION

  • Kim, Hyun-Min;Kim, Young-Jin;Seo, Jong-Hyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.199-214
    • /
    • 2017
  • We consider fixed-point iterations constructed by simple transforming from a quadratic matrix equation to equivalent fixed-point equations and assume that the iterations are well-defined at some solutions. In that case, we suggest real valued functions. These functions provide radii at the solution, which guarantee the local convergence and the uniqueness of the solutions. Moreover, these radii obtained by simple calculations of some constants. We get the constants by arbitrary matrix norm for coefficient matrices and solution. In numerical experiments, the examples show that the functions give suitable boundaries which guarantee the local convergence and the uniqueness of the solutions for the given equations.

CONTRACTION MAPPING PRINCIPLE AND ITS APPLICATION TO UNIQUENESS RESULTS FOR THE SYSTEM OF THE WAVE EQUATIONS

  • Jung, Tack-Sun;Choi, Q-Heung
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.197-203
    • /
    • 2008
  • We show the existence of the unique solution of the following system of the nonlinear wave equations with Dirichlet boundary conditions and periodic conditions under some conditions $U_{tt}-U_{xx}+av^+=s{\phi}_{00}+f$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, ${\upsilon}_{tt}-{\upsilon}_{xx}+bu^+=t{\phi}_{00}+g$ in $(-{\frac{\pi}{2},{\frac{\pi}{2}}){\times}R$, where $u^+$ = max{u, 0}, s, t ${\in}$ R, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator. We first show that the system has a positive solution or a negative solution depending on the sand t, and then prove the uniqueness theorem by the contraction mapping principle on the Banach space.

EXISTENCE RESULTS FOR ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF NONLINEAR SECOND-ORDER IMPULSIVE qk-DIFFERENCE EQUATIONS

  • Ntouyas, Sotiris K.;Tariboon, Jessada;Thiramanus, Phollakrit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.335-350
    • /
    • 2016
  • Based on the notion of $q_k$-derivative introduced by the authors in [17], we prove in this paper existence and uniqueness results for nonlinear second-order impulsive $q_k$-difference equations with anti-periodic boundary conditions. Two results are obtained by applying Banach's contraction mapping principle and Krasnoselskii's fixed point theorem. Some examples are presented to illustrate the results.

ON A TYPE OF DIFFERENTIAL CALCULUS IN THE FRAME OF GENERALIZED HILFER INTEGRO-DIFFERENTIAL EQUATION

  • Mohammed N. Alkord;Sadikali L. Shaikh;Mohammed B. M. Altalla
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.83-98
    • /
    • 2024
  • In this paper, we investigate the existence and uniqueness of solutions to a new class of integro-differential equation boundary value problems (BVPs) with ㄒ-Hilfer operator. Our problem is converted into an equivalent fixed-point problem by introducing an operator whose fixed points coincide with the solutions to the given problem. Using Banach's and Schauder's fixed point techniques, the uniqueness and existence result for the given problem are demonstrated. The stability results for solutions of the given problem are also discussed. In the end. One example is provided to demonstrate the obtained results

FRACTIONAL ORDER OF DIFFERENTIAL INCLUSION GOVERNED BY AN INVERSE STRONGLY AND MAXIMAL MONOTONE OPERATOR

  • Aicha Ouali;Abdallah Beddani;Yamina Miloudi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.739-751
    • /
    • 2024
  • In this paper, we study the existence and uniqueness of solutions for a class of fractional differential inclusion including a maximal monotone operator in real space with an initial condition. The main results of the existence and uniqueness are obtained by using resolvent operator techniques and multivalued fixed point theory.

EFFECT OF PERTURBATION IN THE SOLUTION OF FRACTIONAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • ABDO, MOHAMMED. S.;PANCHAL, SATISH. K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.63-74
    • /
    • 2018
  • In this paper, we study the initial value problem for neutral functional differential equations involving Caputo fractional derivative of order ${\alpha}{\in}(0,1)$ with infinite delay. Some sufficient conditions for the uniqueness and continuous dependence of solutions are established by virtue of fractional calculus and Banach fixed point theorem. Some results obtained showed that the solution was closely related to the conditions of delays and minor changes in the problem. An example is provided to illustrate the main results.

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.