• Title/Summary/Keyword: union of graphs

Search Result 12, Processing Time 0.02 seconds

PLITHOGENIC VERTEX DOMINATION NUMBER

  • T. BHARATHI;S. LEO;JEBA SHERLIN MOHAN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.625-634
    • /
    • 2024
  • The thrust of this paper is to extend the notion of Plithogenic vertex domination to the basic operations in Plithogenic product fuzzy graphs (PPFGs). When the graph is a complete PPFG, Plithogenic vertex domination numbers (PVDNs) of its Plithogenic complement and perfect Plithogenic complement are the same, since the connectivities are the same in both the graphs. Since extra edges are added to the graph in the case of perfect Plithogenic complement, the PVDN of perfect Plithogenic complement is always less than or equal to that of Plithogenic complement, when the graph under consideration is an incomplete PPFG. The maximum and minimum values of the PVDN of the intersection or the union of PPFGs depend upon the attribute values given to P-vertices, the number of attribute values and the connectivities in the corresponding PPFGs. The novelty in this study is the investigation of the variations and the relations between PVDNs in the operations of Plithogenic complement, perfect Plithogenic complement, union and intersection of PPFGs.

SUFFICIENT CONDITION FOR THE EXISTENCE OF THREE DISJOINT THETA GRAPHS

  • Gao, Yunshu;Ma, Ding
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.287-299
    • /
    • 2015
  • A theta graph is the union of three internally disjoint paths that have the same two distinct end vertices. We show that every graph of order $n{\geq}12$ and size at least ${\lfloor}\frac{11n-18}{2}{\rfloor}$ contains three disjoint theta graphs. As a corollary, every graph of order $n{\geq}12$ and size at least ${\lfloor}\frac{11n-18}{2}{\rfloor}$ contains three disjoint cycles of even length.

SUPER VERTEX MEAN GRAPHS OF ORDER ≤ 7

  • LOURDUSAMY, A.;GEORGE, SHERRY
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.565-586
    • /
    • 2017
  • In this paper we continue to investigate the Super Vertex Mean behaviour of all graphs up to order 5 and all regular graphs up to order 7. Let G(V,E) be a graph with p vertices and q edges. Let f be an injection from E to the set {1,2,3,${\cdots}$,p+q} that induces for each vertex v the label defined by the rule $f^v(v)=Round\;\left({\frac{{\Sigma}_{e{\in}E_v}\;f(e)}{d(v)}}\right)$, where $E_v$ denotes the set of edges in G that are incident at the vertex v, such that the set of all edge labels and the induced vertex labels is {1,2,3,${\cdots}$,p+q}. Such an injective function f is called a super vertex mean labeling of a graph G and G is called a Super Vertex Mean Graph.

ON INTEGRAL GRAPHS WHICH BELONG TO THE CLASS $\bar{{\alpha}K_{a,a}\cup{\beta}K_{b,b}}$

  • LEPOVIC MIRKO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.61-74
    • /
    • 2006
  • Let G be a simple graph and let G denote its complement. We say that $\bar{G}$ is integral if its spectrum consists of integral values. In this work we establish a characterization of integral graphs which belong to the class $\bar{{\alpha}K_{a,a}\cup{\beta}K_{b,b}}$, where mG denotes the m-fold union of the graph G.

PAIR MEAN CORDIAL LABELING OF SOME UNION OF GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.55-69
    • /
    • 2024
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} && p\;\text{is even} \\ {\frac{p-1}{2}} && p\;\text{is odd,}}$$ and M = {±1, ±2, … ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{s}}_{{\lambda}_1}-\bar{\mathbb{s}}_{{\lambda}^c_1}{\mid}\,{\leq}\,1$ where $\bar{\mathbb{s}}_{{\lambda}_1}$ and $\bar{\mathbb{s}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs.

GPU Based Incremental Connected Component Processing in Dynamic Graphs (동적 그래프에서 GPU 기반의 점진적 연결 요소 처리)

  • Kim, Nam-Young;Choi, Do-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.56-68
    • /
    • 2022
  • Recently, as the demand for real-time processing increases, studies on a dynamic graph that changes over time has been actively done. There is a connected components processing algorithm as one of the algorithms for analyzing dynamic graphs. GPUs are suitable for large-scale graph calculations due to their high memory bandwidth and computational performance. However, when computing the connected components of a dynamic graph using the GPU, frequent data exchange occurs between the CPU and the GPU during real graph processing due to the limited memory of the GPU. The proposed scheme utilizes the Weighted-Quick-Union algorithm to process large-scale graphs on the GPU. It supports fast connected components computation by applying the size to the connected component label. It computes the connected component by determining the parts to be recalculated and minimizing the data to be transmitted to the GPU. In addition, we propose a processing structure in which the GPU and the CPU execute asynchronously to reduce the data transfer time between GPU and CPU. We show the excellence of the proposed scheme through performance evaluation using real dataset.

An Efficient Implementation of Kruskal's Algorithm for A Minimum Spanning Tree (최소신장트리를 위한 크루스칼 알고리즘의 효율적인 구현)

  • Lee, Ju-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.131-140
    • /
    • 2014
  • In this paper, we present an efficient implementation of Kruskal's algorithm to obtain a minimum spanning tree. The proposed method utilizes the union-find data structure, reducing the depth of the tree of the node set by making the nodes in the path to root be the child node of the root of combined tree. This method can reduce the depth of the tree by shortening the path to the root and lowering the level of the node. This is an efficient method because if the tree's depth reduces, it could shorten the time of finding the root of the tree to which the node belongs. The performance of the proposed method is evaluated through the graphs generated randomly. The results showed that the proposed method outperformed the conventional method in terms of the depth of the tree.

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.

THE AUTOMORPHISM GROUP OF COMMUTING GRAPH OF A FINITE GROUP

  • Mirzargar, Mahsa;Pach, Peter P.;Ashrafi, A.R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1145-1153
    • /
    • 2014
  • Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and $x,y{\in}X$ ($x{\neq}y$) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ${\Delta}(G)$. The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(${\Delta}(G)$) is abelian if and only if ${\mid}G{\mid}{\leq}2$; ${\mid}Aut({\Delta}(G)){\mid}$ is of prime power if and only if ${\mid}G{\mid}{\leq}2$, and ${\mid}Aut({\Delta}(G)){\mid}$ is square-free if and only if ${\mid}G{\mid}{\leq}3$. Some new graphs that are useful in studying the automorphism group of ${\Delta}(G)$ are presented and their main properties are investigated.