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SUPER VERTEX MEAN GRAPHS OF ORDER ≤ 7

A.LOURDUSAMY AND SHERRY GEORGE∗

Abstract. In this paper we continue to investigate the Super Vertex Mean
behaviour of all graphs up to order 5 and all regular graphs up to order 7.
Let G(V, E) be a graph with p vertices and q edges. Let f be an injection
from E to the set {1, 2, 3, · · · , p + q} that induces for each vertex v the

label defined by the rule fv(v) = Round

(∑
e∈Ev

f(e)

d(v)

)
, where Ev denotes

the set of edges in G that are incident at the vertex v, such that the set
of all edge labels and the induced vertex labels is {1, 2, 3, · · · , p+ q}. Such
an injective function f is called a super vertex mean labeling of a graph G
and G is called a Super Vertex Mean Graph.

AMS Mathematics Subject Classification : 05C38, 05C78.
Key words and phrases : Super Vertex Mean label, Regular graphs, union
of graphs.

1. Introduction

By a graph we mean a finite, simple and undirected one, G(V,E), consisting
of p elements in V (G) called vertices and q elements in E(G) known as edges.
A graph of order p and size q is often called a (p, q) - graph [14].

A labeling of a graph G is a map that carries graph elements to integers
(usually non-negative). There are varieties of labelings that are already in the
literature [1], [2], [3], [5] and [11].

A super mean labeling f is an injection from V to the set {1, 2, · · · , p + q}
that induces for each edge uv the label

⌈
f(u)+f(v)

2

⌉
such that the set of all

vertex labels and the induced edge labels is {1, 2, · · · , p+ q}. This concept was
introduced by D.Ramya et al.[10]. Some results on mean labeling and super
mean labeling are given in [4], [8], [9], [12] and [13].

Lourdusamy et al. [6] brought in a new extension of mean labeling, called
Super vertex mean labeling of graphs and have proved many graphs, like cycles
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of any length except C4, linear cyclic snakes etc. are Super Vertex Mean graphs
in [7].

Round of a number or rounding function of a numerical value means replacing
it by another value that is apporximately equal but has a shorter, simpler or
more explicit representation. The round function is also called the nearest integer
function and is defined such that Round(x) is the integer closest to x.

The disjoint union of m copies of a graph G is denoted by mG. The union of
two graphs G1 and G2 is a graph G1 ∪ G2 with V (G1 ∪ G2) = V (G1) ∪ V (G2)
and E(G1 ∪G2) = E(G1)∪E(G2). The degree of a vertex v of G is the number
of edges incident on it and is denoted by d(v). In this paper we continue to
investigate behaviour of all graphs up to order 5 and all regular graphs up to
order 7.

2. Super Vertex Mean labeling

Definition 2.1. A Super Vertex Mean labeling f of a (p, q) - graph G(V,E)
is defined as an injection from E to the set {1, 2, 3, · · · , p+ q} that induces for

each vertex v the label defined by the rule fv(v) = Round
(∑

e∈Ev
f(e)

d(v)

)
, where

Ev denotes the set of edges in G that are incident at the vertex v, such that the
set of all edge labels and the induced vertex labels is {1, 2, 3, · · · , p+ q}.

A graph that accepts super vertex mean labeling is called a Super Vertex
Mean (hereafter, SVM) graph.

Remark 2.1. If d(v) = 0 for any vertex v of G then it is called an isolated
vertex and if d(v) = 1 then it is called a pendant vertex. From the definition it
is clear that a graph containing a vertex v whose d(v) ≤ 1 cannot be an Super
Vertex Mean (SVM) graph. For, if deg(v) = 0 for any vertex v of G, the above
definition is not defined and if deg(v) = 1, the induced vertex label remains
the same as the label of the edge that is incident on the vertex v. Therefore,
necessarily deg(v) ≥ 2 for all vertices v of a SVM graph. It is obvious that no
tree is a SVM graph. In this paper, we discuss only those graphs with d(v) ≥ 2
for all vertices v of G.

Remark 2.2. If d(v) = r, for every vertex v of a graph G, then G is called a r
- regular graph. From the above observation, we know that no zero regular or 1
- regular graph is a SVM.

Remark 2.3. A (p, q) - graph G can be r - regular graph if and only if p.r is
even. It is derived from the fact that ’Odd order graphs cannot be odd - regular
graphs.’ The number of edges of a r - regular graph is (p.r2 ), i.e., q = (p.r2 ).

Remark 2.4. In our previous work [7] we have proved that all cycles, Cn for
any n, except C4 are SVM graphs.

2.1. List of Regular graphs of order ≤ 7.
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2.1.1. When order of a graph G is 3, there is just one 2 - regular graph. This
is a cycle of length 3, known as C3 or K3. We have already proved in [7] that it
is an SVM graph.

2.1.2. There are two regular graphs of order 4, of which C4 is 2 - regular and
K4 is 3 - regular. We have proved in [7] that C4 cannot be a SVM graph.

2.1.3. We have a 4 - regular graph K5 with 10 edges and a 2 - regular graph
C5 with 5 edges of order 5, of which C5 have been proved to be a SVM graph.

2.1.4. There are a total of 6 regular graphs of order 6. They are C6, the
disjoint union of two C3’s, both of which are 2 - regular, two non-isomorphic 3
- regular graphs with 9 edges each, a 4 - regular graph with 12 edges and the 5
- regular graph K6 with 15 edges.

2.1.5. The number of regular graphs of order 7 is 5. They are C7, disjoint
union of C3 and C4, both of which are 2 - regulars, two non-isomorphic 4 -
regular graphs with 14 edges and the complete graph K7, which is 6 - regular.
Now we proceed to prove that all these regular graphs are Super Vertex Mean
graphs, excepting C4. Before that we discuss the behaviour of disjoint union of
graphs.

Theorem 2.2. If G is an SVM graph, so is mG and if G1 and G2 are SVM
graphs, so is G1 ∪G2. The converse is not true.

Proof. For the first part of the theorem, it is enough to prove that if G1 and G2

are two SVM graphs, then G1 ∪G2 is also SVM.
Let G1(p1, q1) and G2(p2, q2) be two SVM graphs with Super Vertex Mean la-
belings f and g respectively on them.

Let
E(G1) = {ei : 1 ≤ i ≤ q1},
V (G1) = {ui : 1 ≤ i ≤ p1},
E(G2) = {e′i : 1 ≤ i ≤ q2},
V (G2) = {u′

i : 1 ≤ i ≤ p2}.
Define h : E(G1 ∪G2) → {1, 2, 3, · · · , p1 + q1 + p2 + q2} by

h(ei) = f(ei), for 1 ≤ i ≤ q1,

and
h(e′i) = p1 + q1 + g(e′i), for 1 ≤ i ≤ q2

Now we show that h is an injection.
Let

h(ei) = h(ej)

⇒ f(ei) = f(ej)

Since, f is an injection, we have,

ei = ej .
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Figure 1. Super vertex mean labeling of C3 ∪ C4.

Let

h(e′i) = h(e′j)

⇒ p1 + q1 + g(e′i) = p1 + q1 + g(e′j)

⇒ g(e′i) = g(e′j)
Since, g is an injection, we have,

e′i = e′j .

Therefore h is also an injection.
Suppose

h(e′i) = hv(u′
j)

⇒ p1 + q1 + g(e′i) = p1 + q1 + gv(u′
j)

⇒ g(e′i) = gv(u′
j)

which is a contradiction as g is Super Vertex Mean labeling.
So h is a SVM labeling.
To prove the second part of the theorem, we prove that although C4 is not a
SVM graph, 2C4 and C3 ∪ C4 are SVM graphs. Also we prove the general case
that C3 ∪ Cm is SVM for all m ≥ 3.

We know that Cm is SVM graph for all m ≥ 3 and m �= 4. Therefore it is
enough to prove that C3 ∪ C4 and 2C4 are SVM graphs.
Case 1: C3 ∪ C4 is a SVM graph.

Let

E(C3) = {e1, e2, e3}
and

E(C4) = {e′1, e′2, e′3, e′4}
Define f : E(C3 ∪ C4) → {1, 2, 3, · · · , 13, 14} by

f(e1) = 1, f(e2) = 3, f(e3) = 7

f(e′1) = 6, f(e′2) = 10, f(e′3) = 14, f(e′4) = 11

It is clear that f is a Super Vertex Mean labeling of C3 ∪C4. Therefore C3 ∪C4

is SVM graph, though C4 is not.
�

Example 2.3. Super vertex mean labeling of C3 ∪ C4 is shown in Figure 1.
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Case 1a. General Case: C3 ∪ Cm is SVM for all m ≥ 3 including m = 4.
All cycles, except C4, are SVM graphs and so their union, but then C3 ∪ C4 is
a SVM graph. So, it is a clear fact that C3 ∪Cm is SVM for all m ≥ 3. But we
want to prove it in an alternate way without deriving from the above theorem
and the fact that C3 and Cm are SVM graphs for all m �= 4.

Proof. There is nothing to prove in the case of odd m as all odd cycles are SVM
graphs and their union is also SVM. Without loss of generality, we assume that
m is even and m ≥ 4.
Let m = 2n for some n ≥ 2.

Let

E(C3) = {e1, e2, e3}
and

E(Cm) = {e′1, e′2, · · · , e′m = e′2n}
Define f : E(C3 ∪ Cm) → {1, 2, 3, · · · , 2m+ 6 = 4n+ 6} by

f(e1) = 1, f(e2) = 3, f(e3) = 7

f(e′i) =

⎧⎪⎨
⎪⎩
6 if i = 1

4i+ 2 if 2 ≤ i ≤ n+ 1

8n− 4i+ 11 if n+ 2 ≤ i ≤ 2n = m

Thus f is a super vertex mean labeling of C3 ∪Cm for all even m ≥ 4, and it is
a SVM graph. �

Case 2: 2C4 is a SVM graph.

Proof. Let C4 and C′
4 be two cycles of length 4.

Let

E(C4) = {e1, e2, e3, e4}
and

E(C′
4) = {e′1, e′2, e′3, e′4}

Define f : E(C4 ∪ C′
4) → {1, 2, 3, · · · , 15, 16} by

f(e1) = 1, f(e2) = 3, f(e3) = 5, f(e4) = 10

f(e′1) = 7, f(e′2) = 11, f(e′3) = 14, f(e′4) = 16

Then f is a Super Vertex labeling of 2C4, and 2C4 is a SVM graph. �

Example 2.4. Super vertex mean labeling of 2C4 is shown in Figure 2.

Corollary 2.5. mC4 is a SVM graph for all even m ≥ 2.
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Figure 2. Super vertex mean labeling of 2C4

Proof. By the above theorem, we have proved that 2C4 and union of any two
SVM graphs is a SVM graph.
Any even m is a multiple of 2, and therefore mC4 is a union of m

2 times of 2C4.
Or, mC4, for m ≥ 4, m ≡ 0 (mod 2) is equal to m − 2C4 ∪ 2C4, where both of
which are SVM graphs.
Thus the corollary. �

Corollary 2.6. Disjoint union of any number of cycles of any length, except C4

is a SVM graph.

Proof. Since all the cycles except C4 are SVM graphs, by the above theorem,
their unions are SVM graphs.
Thus the corollary. �

Corollary 2.7. When the disjoint union of any number of cycles of any length
contains C4, it is a SVM graph when,

1. There are even number of C4 in the union, or
2. There exists at least one C3 in the union.

Proof. 1. If there are even number of C4 in the union, by the above corollary 1,
union of these is SVM graph. All other cycles are SVM graphs. Therefore the
union of both is a SVM graph by above theorem.

2. If there exists at least one C3 in the union of cycles, then the union of this
C3 and any one C4, if C4 has an odd occurrence, is a SVM graph. Otherwise,
C4 occurs in even number of times, and their union is proved to be a SVM
graph. �

3. Regular Graphs as SVM Graphs

Theorem 3.1. Regular graphs of order ≤ 7 and Petersen graph are SVM graphs,
C4 being the only exception.

3.1. Petersen graph. Given in figure 3 is an SVM labeling of 3 − regular
graph of order 10, known as Petersen Graph.

Since f(U)∪fv(V ) = {1, 2, 3, · · · , 24, 25}, it is a SVM labeling. While labeling
Petersen graph, it is interesting to observe that the sum of all vertex labels is 2

3
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Figure 3. SVM labeling of Petersen Graph

times of the sum of all edge labels. i.e.,

∑
v∈V (G)

fv(v) =

(∑
e∈E(G) f(e)× 2

3

)

It happens because when we calculate the induced vertex label which is rounded
up average of the labels of 3 − edges that are incident on that particular vertex,
we consider the edges twice.

Being a SVM labeling, sum of all these labels is,(
(p+ q)(p+ q + 1)

2

)
=

∑
v∈V (G)

fv(v) +
∑

e∈E(G)

f(e)

=

(∑
e∈E(G) f(e)× 2

3

)
+

∑
e∈E(G)

f(e)

=

(∑
e∈E(G) f(e)× 5

3

)

Here for Petersen graph, the total is 325, and sum of all edge labels is 195 and
that of all vertex labels is 130, perfectly in agreement with the above observation.

This need not be a necessary phenomenon for all types of SVM labeling of
regular graphs. But this happens true for most of the regular graphs which we
have examined. This fact is used as a hint for labeling the following graphs of
order up to 7.

3.2. Regular graphs of order 3. 2 - regular graph of order 3 is the cycle C3.
We know that C3 is a SVM graph .
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3.3. Regular graphs of order 4. Regular graphs of order 4 are C4, which is
2 - regular and K4, that is 3 - regular. We know that C4 is not a SVM graph.
We prove that 3 - regular graph of order 4, i.e., K4 is a SVM graph.
By above observation,(

(p+ q)(p+ q + 1)

2

)
=

∑
v∈V (G)

fv(v) +
∑

e∈E(G)

f(e)

=

(∑
e∈E(G) f(e)× 2

3

)
+

∑
e∈E(G)

f(e)

=

(∑
e∈E(G) f(e)× 5

3

)

In this case of K4, we have,∑
e∈E(G)

f(e) =
3

5
×
(
(p+ q)(p+ q + 1)

2

)

ie., ∑
e∈E(G)

f(e) =
3

5
×
(
10× 11

2

)

= 33

and, ∑
v∈V (G)

fv(v) =
2

5
×
(
10× 11

2

)

= 22

So we can select the set {4, 5, 6, 7}, as the vertex label set, the sum of whose
elements is equal to 22. Consequently the edge label set is {1, 2, 3, 8, 9, 10}, sum
of whose elements is 33. We have partitioned the positive integers up to p + q,
(here it is 10) in the above manner by the following logic. These numbers, 1
to 10, have to be distributed into two mutually disjoint sets in such a way that
except any 4 numbers that are reserved as induced vertex labels, have to be
clubbed in 4 sets of 3 elements (K4 is a 3 - regular graph) and have to appear
exactly twice without two numbers of one set coming together in some other set.
it is because two vertices are connected by a single edge. And in a complete
graph like K4, each vertex is connected by an edge to every other vertex of the
graph.
It is impossible to include the numbers 1, 2, 9 and 10 in vertex label set. While
calculating the average we cannot obtain one of these numbers as the rounded
up average of any 3 numbers up to 10, without including the same number.
Using the same number both as vertex label and edge label is ruled out by the
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Figure 4. Super vertex mean labeling of K4 in 4 different ways

definition of SVM labeling.
Therefore,

{1, 2, 9, 10} ⊆ f(E)

The sum of these numbers is 22. If we take two more numbers in the edge label
set (K4 has 6 edges), so that the sum equal to 33, we are done. By careful way
of inspection, we have found that the only possibility is to include the numbers
3 and 8 in to the above set.
So,

f(E) = {1, 2, 3, 8, 9, 10}
and,

fv(V ) = {4, 5, 6, 7}
Using these sets, we can label K4 in 4 different ways as shown below in figure 4.

3.4. Regular graphs of order 5. r - regular graphs, 3 ≤ r ≤ p− 1 of order 5
are C5, which is a 2 - regular graph, and K5 which is 4 - regular graph. Being
an odd order, there cannot be any odd regular graphs. In our previous works
[7] we have proved that C5, a cycle of length 5 is SVM graph. Now we proceed
to prove that K5, the complete graph of order 5 is SVM graph.

We observe that any complete graph Kn for some n ≥ 3 is a n − 1 regular

graph. Therefore it has n×(n−1)
2 edges.

Therefore,

p+ q = n+
n× (n− 1)

2
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Equivalently, for any r - regular graph,

p+ q = n+
n× r

2

=
n× (r + 2)

2
When r = n− 1, we get

p+ q =
n× (n+ 1)

2
For K5,

p+ q =
5× 6

2
= 15

As in the case of K4, here∑
v∈V (G)

fv(v) =

∑
e∈E(G) f(e)× 2

4

may be true. It is because every edge is counted twice while finding the induced
vertex label which is the rounded up average of labels of 4 edges incident on that
particular vertex. Therefore,

(p+ q)× (p+ q + 1)

2
=

∑
v∈V (G)

fv(v) +
∑

e∈E(G)

f(e)

=
∑

e∈E(G)

f(e) +
1

2
×

∑
e∈E(G)

f(e)

=
3

2
×

∑
e∈E(G)

f(e)

⇒
∑

e∈E(G)

f(e) =
2

3
× (p+ q)× (p+ q + 1)

2

Now,
(p+ q)× (p+ q + 1)

2
=

15× 16

2
= 120∑

e∈E(G)

f(e) = 80

∑
v∈V (G)

fv(v) = 40

From the set {1, 2, 3, · · · , 14, 15}, the subset {1, 2, 14, 15} has to be a subset of
f(E) in SVM labeling. If 3 becomes a vertex label, then 5 and 6 cannot become
vertex labels because when 3 and 6 or 3 and 5 become vertex labels, then among
10, 11, 12 and 13, only three numbers could be chosen as induced vertex labels.
For example,

3 = Round

(
1 + 2 + 3 + 4

4

)
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6 = Round

(
1 + 7 + 8 + 9

4

)
If we select 10 and 13 as the next two vertex labels then only 11 can be the fifth
one,
i.e.,

13 = Round

(
9 + 12 + 14 + 15

4

)

13 = Round

(
11 + 12 + 14 + 15

4

)
Then

13 = Round

(
9 + 12 + 14 + 15

4

)
The remaining numbers that could be used to get rounded up average of 10
and 11 are 2, 4, 5, 7, 8, 12, 14 and 15, and they can be classified into 3 sets which
appeared elsewhere. So we cannot have any option to have rounded up average
of 10 and 11 without repeating any numbers which have already appeared in
pair.
If we select 11 and 13 as vertex labels where,

13 = Round

(
9 + 12 + 14 + 15

4

)
or,

13 = Round

(
10 + 12 + 14 + 15

4

)
then 12 cannot be the fifth vertex label. 10 is already ruled out to be the vertex
label with 13 as another vertex label.
Therefore, 13 has to be an edge label and 10, 11 and 12 can be vertex labels
along with 3.
Here too, 12 has only three options left,

12 = Round

(
4 + 13 + 14 + 15

4

)

12 = Round

(
5 or 6 + 13 + 14 + 15

4

)

12 = Round

(
7 + 13 + 14 + 15

4

)
This implies 10 and 11 are obtained as averages by making use of any one of the
numbers among 13, 14 and 15.
For example, 11 cannot be made a vertex label without repeating any one of the
above numbers.
Therefore when 3 becomes a vertex label, the only next vertex label can be 7 or
any number greater than 7. By continuing our inspection in a similar way we
get the possible sets which can be vertex label set as follows;
1. {3, 7, 8, 10, 12}
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2. {3, 7, 9, 10, 11}
3. {4, 6, 7, 10, 13}
4. {4, 6, 7, 11, 12}
5. {4, 6, 8, 9, 13}
6. {4, 6, 8, 10, 12}
7. {4, 6, 9, 10, 11}
8. {6, 7, 8, 9, 10}
9. {6, 7, 8, 9, 11}
It is interesting to note that except the 9th set, all the others follow the rule,∑

v∈V (G)

fv(v) =
1

2
×

∑
e∈E(G)

f(e) = 40

Therefore for r - regular graphs, the condition∑
v∈V (G)

fv(v) =
2

r
×

∑
e∈E(G)

f(e)

is not a necessary condition, but only a hint to SVM labeling. Given in figure 5
are the pictorial representations of different SVM labelings of K5.

3.5. Regular graphs of order 6. Regular graphs having no isolated or pen-
dant vertex of order 6 are the cycle, C6 and 2C3, which are 2 - regulars, K3,3

and another graph with 9 edges, both of them are 3 - regulars, the octahedral
graph with 12 edges, which is 4 - regular and the complete graph K6. In total
there are 6 non-isomorphic r - regular graphs of order 6, where 2 ≤ r ≤ 5.
We have already proved that C6 and 2C3 are SVM graphs. We show now that
K3,3 is a SVM graph.
For K3,3, p = 6 and q = 9.

Therefore,

f(E) ∪ fv(V ) = {1, 2, 3, · · · , 14, 15}
While inspecting the possibility of SVM labeling of K3,3 we have to keep the
following in mind:

(1) Partition the above set into two sets, keeping the hint for labeling r-
regular graphs, i.e.,

∑
v∈V (G) f

v(v) = 2
r ×∑e∈E(G) f(e)

(2) Clearly fv(V ) contains 6 elements and f(E) has 9 elements.
(3) Now the set f(E) is distributed into six sets of 3 elements each in such

a way that,
• The rounded up average of each set is one of the numbers in the set
fv(V ). These numbers are not repeated.

• These six sets form two partitions, each partition having 3 sets and
no number in one set of one partition is repeated in another set of
the same partition.

• All the three numbers in one set of one partition are distributed
equally in each set of the second partition.
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Figure 5. Pictorial representations of different SVM labelings
of K5

Following above directions we form six subsets of f(E) as given below;
{1, 2, 6}, {4, 7, 12}, {11, 14, 15} and {1, 4, 11}, {6, 7, 14}, {2, 12, 15}whose rounded
up averages are 3, 8, 13, 5, 9 and 10 respectively. Note that the first three sets
and the last three sets are having the same elements, the only difference being
that two elements of any set do not appear together in any other set. The first
three sets and the last three sets in themselves form two different partitions of
the set f(E).
The above labeling and another SVM labeling of K3,3 are shown pictorially in
figure 6.
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Figure 6. SVM labelings of K3,3

3.5.1. Another 3 - regular graph of order 6. There is another 3 - regular
graph that is non-isomorphic to K3,3 with 9 edges and 6 vertices. Therefore we
cannot use the same method that we used in the case of the previous graph. The
SVM labelings of this graph is shown below in figure 7.

3.5.2. 4 - regular graph of order 6 (Octahedral graph). There is a 4 -
regular graph of order 6 having 12 edges.
Therefore

p+ q = 18

(p+ q)× (p+ q + 1)

2
= 171

∑
v∈V (G)

fv(v) =
2

r
×

∑
e∈E(G)

f(e)

=
2

4
×

∑
e∈E(G)

f(e)

171 =
3

2
×

∑
e∈E(G)

f(e)
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∑
v∈V (G)

fv(v) =
171

3
= 57

Using this hint we can partition the numbers up to 18 into two sets as given
below;

f(E) = {1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 18}
fv(V ) = {3, 8, 9, 10, 11, 16}

where f(E) contains q elements and fv(V ) has p elements. The elements of
f(E) are repeated exactly once to find the rounded up average of four numbers
of f(E), in order to obtain the elements in fv(V ). Care should be taken so as
not to place two numbers together while finding a second rounded up average.
Thus we find that this 4 - regular graph of order 6 too is a SVM graph with the
following SVM labeling in figure 8.

3.5.3. The Complete graph K6. Now we have the task of labeling K6, the
complete graph of order 6. Being a 5- regular graph the hint that we could use
is that, ∑

v∈V (G)

fv(v) =
2

5
×

∑
e∈E(G)

f(e)

The total sum of all the numbers up to p+ q, i.e., up to 21 is 231, where p = 6
and q = 15.
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Figure 8. A 4 - regular graph of order 6 is a SVM graph

By the definition of SVM labeling, we have,

231 =
∑

v∈V (G)

fv(v) +
∑

e∈E(G)

f(e)

This implies that,
7

5
×

∑
e∈E(G)

f(e) = 231

∑
e∈E(G)

f(e) =
231× 5

7
= 165

and, ∑
v∈V (G)

fv(v) =
231× 2

7
= 66

So we partition the numbers up to 21 into two sets,

f(E) = {1, 2, 3, 5, 6, 7, 8, 9, 14, 15, 17, 18, 19, 20, 21}
fv(V ) = {4, 10, 11, 12, 13, 16}

having q and p elements respectively and the respective sum of its members
being 165 and 66.
The other aspects are kept in mind as in previous cases of labeling regular and
complete graphs.
In a complete graph’s SVM labeling, the (n−1) elements of f(E) that are taken
to calculate the rounded up average, in order to get one of the elements of fv(V ),
are used a total of (n−1) instances. But they are used one at a time, and without
repeating. Whereas in a r - regular graph’s labeling only r - elements are used
only in any r - instances, one at a time and without repeating. Thus we obtain
a SVM labeling of K6 and it is shown in figure 9.
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Figure 9. SVM labeling of K6

3.6. Regular graphs of order 7. There are 5 regular graphs of order 7 that
do not have any isolated and pendant vertex. They are C7, C3 ∪ C4, which are
2 - regulars, two non-isomorphic 4 - regular graphs and K7, the complete graph
which is 6 - regular.

We have already proved that C7 and C3 ∪ C4 are SVM graphs.
Let us investigate the SVM behaviour of the rest of graphs of order 7. We

start with 4 - regular graphs of order 7. As in previous cases we can use the
following hint that; ∑

v∈V (G)

fv(v) =
2×∑e∈E(G) f(e)

4

and, since p+ q = 7 + 14 = 21, we have

(p+ q)(p+ q + 1)

2
= 231

3

2
×

∑
e∈E(G)

f(e) = 231

∑
v∈V (G)

fv(v) +
∑

e∈E(G)

f(e) = 231

∑
e∈E(G)

f(e) =
2× 231

3
= 154

∑
v∈V (G)

fv(v) =
231

3
= 77

So we partition the numbers up to 21 into two possible sets, having q and p
elements respectively;

f(E) = {1, 2, 4, 5, 6, 7, 8, 9, 13, 15, 16, 17, 18, 20, 21}
fv(V ) = {3, 8, 10, 11, 12, 12, 19}
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Figure 10. Two different labelings of two non-isomorphic 4 -
regular graphs of order 7

These two partitions give rise to two different SVM labelings for the following
two non-isomorphic 4 -regular graphs of order 7 as shown in figure 10.

3.6.1. The complete graph K7. Now we proceed to prove that K7 is a SVM
graph. K7 being a 6 - regular graph of order 7 and each vertx is connected to
every other vertex by a unique edge, we have to partition the numbers up to
n×(n+1)

2 , since for a complete graph, p+ q = n×(n+1)
2 .

i.e.,
7× 8

2
= 28

The hint that we could use as in previous cases is that

∑
v∈V (G)

fv(v) =
2×∑e∈E(G) f(e)

6

and, since p+ q = 28, we have

(p+ q)(p+ q + 1)

2
= 406
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Figure 11. SVM labeling of K7

4

3
×

∑
e∈E(G)

f(e) = 406

∑
v∈V (G)

fv(v) +
∑

e∈E(G)

f(e) = 406

∑
e∈E(G)

f(e) =
406× 3

4
= 101.5

∑
v∈V (G)

fv(v) =
406

4
= 304.5

For our convenience, we take this as∑
e∈E(G)

f(e) = 102

∑
v∈V (G)

fv(v) = 304

Based on this, we obtain the following partitions of the numbers upto 28

f(E) = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28}
fv(V ) = {4, 12, 13, 15, 16, 19, 23}

having q and p elements respectively.
Careful distribution of these numbers as various edge as well as vertex labels,
keeping the facts mentioned in earlier cases, we obtain the SVM labeling of K7

as shown in figure 11.



584 A.Lourdusamy and Sherry George

2

4 8

6
3

7

91

5

Figure 12

4. Super Vertex Mean Graphs of order ≤ 5

Theorem 4.1. All the graphs of order ≤ 5 having no isolated or pendant vertex
are Super Vertex Mean graphs, having C4 the only exception.

We have so far proved that all the complete and regular graphs, (except C4)
of order up to 7, are SVM graphs and graphs containing any isolated or pendant
vertex are not SVM graphs. In this section we examine all other graphs of order
≤ 5 and do not fall into the above category of graphs. There are 3 graphs with
d(v) ≥ 2 of order 4, out of which a graph with 5 edges fulfill our requirement and
so we examine its SVM behaviour and find that it is a SVM graph. Its labeling
is given in figure 12.

Of the order 5, there are altogether 10 non-isomorphic graphs with d(v) ≥ 2.
Among those, 8 graphs need to be investigated of their SVM nature. We have
found that they are all SVM graphs as shown in figure 13.

5. Conclusion

We conclude by stating that all the r - regular graphs of order ≤ 7 and all
graphs having no isolated or pendant vertex and order ≤ 5, excluding C4 are
SVM graphs.
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