References
- A. Abdollahi, S. Akbari, and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006), no. 2, 468-492. https://doi.org/10.1016/j.jalgebra.2006.02.015
- N. Biggs, Algebraic Graph Theory, Second ed., Cambridge Univ. Press, Cambridge, 1993.
- P. J. Cameron, Automorphisms of graphs, Beineke, Lowell W. (ed.) et al., Topics in Algebraic Graph Theory, Cambridge: Cambridge University Press, Encyclopedia of Mathematics and Its Applications 102 (2004), 137-155.
- R. Frucht, On the groups of repeated graphs, Bull. Amer. Math. Soc. 55 (1949), 418-420. https://doi.org/10.1090/S0002-9904-1949-09230-3
- The GAP Team, GAP, Groups, Algorithms and Programming, Lehrstuhl De fur Mathematik, RWTH, Aachen, 1995.
- D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups, Mathematical Surveys and Monographs, 40.1. American Mathematical Society, Providence, RI, 1994.
- J. Lennox and J. Wiegold, Extension of a problem of Paul Erdos on groups, J. Aust. Math. Soc. Ser. A 31 (1981), no. 4, 459-463. https://doi.org/10.1017/S1446788700024253
- M. Mirzargar and A. R. Ashrafi, Some distance-based topological indices of a noncommuting graph, Hacet. J. Math. Stat. 41 (2012), no. 4, 515-526.
- A. R. Moghaddamfar, On noncommutativity graphs, Siberian Math. J. 47 (2006), 911-914. https://doi.org/10.1007/s11202-006-0101-y
- A. R. Moghaddamfar, W. J. Shi, W. Zhou, and A. R. Zokayi, On the noncommuting graph associated with a finite group, Siberian Math. J. 46 (2005), no. 2, 325-332. https://doi.org/10.1007/s11202-005-0034-x
- B. H. Neumann, A problem of Paul Erdos on groups, J. Aust. Math. Soc. Ser. A 21 (1976), no. 4, 467-472. https://doi.org/10.1017/S1446788700019303
- D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
- D. M. Rocke, p-groups with abelian centralizers, Proc. London Math. Soc. (3) 30 (1975), 55-75.
- D. B. West, Introduction to Graph Theory, Prentice Hall. Inc. Upper Saddle River, NJ, 1996.
- D. L. Winter, The automorphism group of an extraspecial p-group, Rocky Mountain J. Math. 2 (1972), no. 2, 159-168. https://doi.org/10.1216/RMJ-1972-2-2-159