• 제목/요약/키워드: uniformly k-convex functions

검색결과 19건 처리시간 0.03초

SUBCLASSES OF k-UNIFORMLY CONVEX AND k-STARLIKE FUNCTIONS DEFINED BY SĂLĂGEAN OPERATOR

  • Seker, Bilal;Acu, Mugur;Eker, Sevtap Sumer
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.169-182
    • /
    • 2011
  • The main object of this paper is to introduce and investigate new subclasses of normalized analytic functions in the open unit disc $\mathbb{U}$, which generalize the familiar class of k-starlike functions. The various properties and characteristics for functions belonging to these classes derived here include (for example) coefficient inequalities, distortion theorems involving fractional calculus, extreme points, integral operators and integral means inequalities.

Confluent Hypergeometric Distribution and Its Applications on Certain Classes of Univalent Functions of Conic Regions

  • Porwal, Saurabh
    • Kyungpook Mathematical Journal
    • /
    • 제58권3호
    • /
    • pp.495-505
    • /
    • 2018
  • The purpose of the present paper is to investigate Confluent hypergeometric distribution. We obtain some basic properties of this distribution. It is worthy to note that the Poisson distribution is a particular case of this distribution. Finally, we give a nice application of this distribution on certain classes of univalent functions of the conic regions.

MAJORIZATION PROBLEMS FOR UNIFORMLY STARLIKE FUNCTIONS BASED ON RUSCHEWEYH q-DIFFERENTIAL OPERATOR RELATED WITH EXPONENTIAL FUNCTION

  • Vijaya, K.;Murugusundaramoorthy, G.;Cho, N.E.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.71-81
    • /
    • 2021
  • The main object of this present paper is to study some majorization problems for certain classes of analytic functions defined by means of q-calculus operator associated with exponential function.

A HAHN-BANACH EXTENSION THEOREM FOR ENTIRE FUNCTIONS OF NUCLEAR TYPE

  • Nishihara, Masaru
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.131-143
    • /
    • 2004
  • Let Ε and F be locally convex spaces over C. We assume that Ε is a nuclear space and F is a Banach space. Let f be a holomorphic mapping from Ε into F. Then we show that f is of uniformly bounded type if and only if, for an arbitrary locally convex space G containing Ε as a closed subspace, f can be extended to a holomorphic mapping from G into F.

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

Uniformly Close-to-Convex Functions with Respect to Conjugate Points

  • Bukhari, Syed Zakar Hussain;Salahuddin, Taimoor;Ahmad, Imtiaz;Ishaq, Muhammad;Muhammad, Shah
    • Kyungpook Mathematical Journal
    • /
    • 제62권2호
    • /
    • pp.229-242
    • /
    • 2022
  • In this paper, we introduce a new subclass of k-uniformly close-to-convex functions with respect to conjugate points. We study characterization, coefficient estimates, distortion bounds, extreme points and radii problems for this class. We also discuss integral means inequality with the extremal functions. Our findings may be related with the previously known results.

HYPERGEOMETRIC DISTRIBUTION SERIES AND ITS APPLICATION OF CERTAIN CLASS OF ANALYTIC FUNCTIONS BASED ON SPECIAL FUNCTIONS

  • Murugusundaramoorthy, Gangadharan;Porwal, Saurabh
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.671-684
    • /
    • 2021
  • The tenacity of the current paper is to find connections between various subclasses of analytic univalent functions by applying certain convolution operator involving generalized hypergeometric distribution series. To be more specific, we examine such connections with the classes of analytic univalent functions k - 𝓤𝓒𝓥* (𝛽), k - 𝓢*p (𝛽), 𝓡 (𝛽), 𝓡𝜏 (A, B), k - 𝓟𝓤𝓒𝓥* (𝛽) and k - 𝓟𝓢*p (𝛽) in the open unit disc 𝕌.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • 제55권2호
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • 호남수학학술지
    • /
    • 제44권1호
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.