Uniformly Close-to-Convex Functions with Respect to Conjugate Points

Syed Zakar Hussain Bukhari*, Taimoor Salahuddin, Imtiaz Ahmad and Muhammad Ishaq
Department of Mathematics, Mirpur University of Science and Technology(MUST), Mirpur-10250(AJK), Pakistan
e-mail: fatmi@must.edu.pk, taimoor_salahuddin@yahoo.com,
drimtiaz.maths@must.edu.pk and ishaq_381@yahoo.com

Shah Muhammad
Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
e-mail: shah.maths@must.edu.pk
AbSTRACT. In this paper, we introduce a new subclass of k-uniformly close-to-convex functions with respect to conjugate points. We study characterization, coefficient estimates, distortion bounds, extreme points and radii problems for this class. We also discuss integral means inequality with the extremal functions. Our findings may be related with the previously known results.

1. Introduction

Let $\mathbb{U}:=\{z: z \in \mathbb{C}$ and $|z|<1\}$ be the open unit disk and $\mathcal{H}(\mathbb{U})$ denote the class of all analytic functions f defined in the open unit disc \mathbb{U}. For a positive integer n and $a \in \mathbb{C}$, let

$$
\begin{equation*}
\mathcal{H}[a, n]:=\left\{f \in \mathcal{H}(\mathbb{U}): f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots, z \in \mathbb{U}\right\} . \tag{1.1}
\end{equation*}
$$

We define the class \mathcal{A} by

$$
\begin{equation*}
\mathcal{A}:=\left\{f \in \mathcal{H}[0,1]: f(z)=z+a_{2} z^{2}+\cdots \quad(z \in \mathbb{U})\right\} \tag{1.2}
\end{equation*}
$$

Let \mathcal{P} denote the class of Carathéodory functions p such that $p(0)=1, \operatorname{Re}(p(z))>0$ and

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots, z \in \mathbb{U} .
$$

* Corresponding Author.

Received April 3, 2018; revised November 29, 2018; accepted December 19, 2018.
2010 Mathematics Subject Classification: 30C45, 30C80.
Key words and phrases: Characterizations, coefficients estimates, distortion bounds, extreme points, radii problems.

The Möbius function $L_{0}(z)=\frac{1+z}{1-z}, z \in \mathbb{U}$ or its rotation acts as an extremal function for the class \mathcal{P} and maps the open unit disc onto the right half-plane. Recall also the class $\mathcal{P}(\gamma) \subset \mathcal{P}, 0 \leq \gamma<1$, consisting of functions $p \in \mathcal{P}$ such that $\Re(p(z))>\gamma$ in \mathbb{U}. For $f, g \in \mathcal{H}(\mathbb{U})$, we say that the function f is subordinate to the function g and write $f(z) \prec g(z)$, if there exists a Schwarz function w, that is, $w \in \mathcal{H}(\mathbb{U})$, with $w(0)=0$ and $|w(z)|<1$, such that $f(z)=g(w(z))$. For a univalent function $g, f(z) \prec g(z)$ if and only if $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$. For reference, see [10]. Applying subordination, Janowski [6] introduced the class $\mathcal{P}[A, B]$ for $-1 \leq B<A \leq 1$. A function p analytic in \mathbb{U} such that $p(0)=1$ belongs to the class $\mathcal{P}[A, B]$, if

$$
p(z) \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) \quad \text { or } \quad p(z)=\frac{1+A w(z)}{1+B w(z)} \quad(z \in \mathbb{U})
$$

where w is a Schwarz function. Geometrically, the image $p(\mathbb{U})$ of $p \in \mathcal{P}[A, B]$ lies inside the open unit disc centered on the real axis with diameter ends at $p(-1)$ and $p(1)$. Clearly, $\mathcal{P}[A, B] \subset \mathcal{P}\left(\frac{1-A}{1-B}\right)$. The class $\mathcal{P}[A, B]$ is related with the class \mathcal{P} of functions with positive real parts by $p \in \mathcal{P}$ if and only if

$$
\frac{(A+1) p(z)-(A-1)}{(B+1) p(z)-(B-1)} \in \mathcal{P}[A, B] .
$$

The simplest representation of the conic domain Δ_{k} is

$$
\Delta_{k}=\left\{w=u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}, k \geq 0\right\}
$$

This domain represents the right half plane for $k=0$, a hyperbola for $0<k<1$, a parabola for $k=1$ and an ellipse for $k>1$. A normalized analytic function f is close-to-convex, if and only if there exists a function $g \in \mathcal{C}$ such that

$$
\Re\left\{\frac{z f^{\prime}(z)}{g(z)}\right\} \in \mathcal{P}, z \in \mathbb{U} .
$$

We denote the class of close-to-convex functions by \mathcal{K}. This class was introduced by Kaplan [16]. Sakaguchi [13] defined the class of starlike functions with respect to symmetric points as follows:

Definition 1.1. Let $f \in \mathcal{S}$. Then $f \in \mathcal{S}_{\mathrm{CP}}$, if it satisfies the condition:

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}\right)>0, \quad(z \in \mathbb{U})
$$

For $f \in \mathcal{A}, f \in \mathcal{C}_{\mathrm{CP}}[18]$ if and only if $z f^{\prime} \in \mathcal{S}_{\mathrm{CP}}$, where $\mathcal{C}_{\mathrm{CP}}$ represents the class of convex functions with respect to conjugate points. Various authors studied the class $\mathcal{C}_{\mathrm{CP}}$ of functions convex with respect toconjugate points and its subclasses, for detail, see [11, 12, 16, 21]. Obviously, it is a subclass of close-to-convex functions
and hence it represents univalent functions. Moreover, this class includes the class of convex functions and odd starlike functions with respect to the origin, see [13].

A normalized analytic function $f \in Q$ the class of quasi convex, if and only if $z f^{\prime} \in \mathcal{K}$. Silverman [19] introduced the class \mathcal{T} of analytic univalent functions f having non-negative coefficients in the series representation:

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0, z \in \mathbb{U}\right) \tag{1.3}
\end{equation*}
$$

The class $\mathcal{T S}^{*}(\gamma)$ a subclasses of \mathcal{T} is defined by $\mathcal{S}^{*}(\gamma)=\mathcal{S}^{*}(\gamma) \cap \mathcal{T}$. Selvaraj and Selvakumaran [14] investigated the classes $\mathfrak{S}_{\mathrm{CP}}(\delta, k, \gamma)$ and $\mathcal{C}_{\mathrm{CP}}(\delta, k, \gamma)$ defined below:

$$
\operatorname{Re} \frac{2 z F_{\delta}^{\prime}(z)}{(1-\delta) F(z)+\delta z F^{\prime}(z)}>k\left|\frac{2 z F_{\delta}^{\prime}(z)}{(1-\delta) F(z)+\delta z F^{\prime}(z)}-1\right|+\gamma \quad(z \in \mathbb{U})
$$

where

$$
\begin{equation*}
F(z)=f(z)+\overline{f(\bar{z})} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\delta}(z)=(1-\delta) f(z)+\delta z f^{\prime}(z) \tag{1.5}
\end{equation*}
$$

$0 \leq \delta \leq 1,0 \leq \gamma<1, k \geq 0$. Here we let $\mathcal{T S}_{\mathrm{CP}}(\delta, k, \gamma)=\mathcal{T} \cap \mathcal{S}_{\mathrm{CP}}(\delta, k, \gamma)$. A function $f \in \mathcal{C}_{\mathrm{CP}}(\delta, k, \gamma)[18]$ if and only if $z f^{\prime} \in \mathcal{S}_{\mathrm{CP}}(\delta, k, \gamma)$. For $\delta=0$, we have the classes $\mathcal{S}_{\mathrm{CP}}(k, \gamma)$ and $\mathcal{C}_{\mathrm{CP}}(k, \gamma)$ and also the classes

$$
\begin{equation*}
\mathcal{T S}_{\mathrm{CP}}(k, \gamma)=\mathfrak{T} \cap \mathcal{S}_{\mathrm{CP}}(k, \gamma) \quad \text { and } \mathcal{T C}_{\mathrm{CP}}(k, \gamma)=\mathcal{T} \cap \mathfrak{C}_{\mathrm{CP}}(k, \gamma) \tag{1.6}
\end{equation*}
$$

These and related classes have been introduced by various authors, for example, see $[2,3,4,5,7,9,15,20]$.

Definition 1.2. A function $f \in \mathcal{K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$ if we have

$$
\operatorname{Re} \frac{2 z F_{\delta}^{\prime}(z)}{(1-\delta) G(z)+\delta z G^{\prime}(z)}>k\left|\frac{2 z F_{\delta}^{\prime}(z)}{(1-\delta) G(z)+\delta z G^{\prime}(z)}-1\right|+\beta \quad(z \in \mathbb{U})
$$

where F_{δ} is given in (1.5), $G(z)=g(z)+\overline{g(\bar{z})}: g \in \mathcal{T e}_{\mathrm{CP}}(k, \gamma)$ and the class $\mathcal{T C}_{\mathrm{CP}}(k, \gamma)$ is defined in (1.6), $0 \leq \delta \leq 1,0 \leq \gamma<1, k \geq 0$ and $0 \leq \beta<1$.

Here we let

$$
\mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)=\mathcal{K}_{\mathrm{CP}}(\delta, k, \gamma, \beta) \cap \mathcal{T},
$$

where \mathfrak{T} is defined by (1.3). In our investigation of the class $\mathcal{T} \mathcal{K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, we obtain necessary and sufficient conditions, coefficient estimates, distortion bounds, extreme points, radii of close-to-convexity, starlikeness and convexity. We also obtain integral means inequality and other related properties.

2. Some Useful Lemmas

We now state some useful lemmas which we may need to establish our results in the sequel.

Lemma 2.1. If $\gamma \in \mathcal{R}$ and $\omega \in \mathcal{C}$ then

$$
\operatorname{Re} \omega \geq \gamma \Leftrightarrow|\omega+(1-\gamma)|-|\omega-(1-\gamma)| \geq 0
$$

Lemma 2.2. If $\gamma \in \mathcal{R}$ and $\omega \in \mathcal{C}$ then

$$
\operatorname{Re} \omega \geq k|\omega-1|+\gamma \Leftrightarrow \operatorname{Re}\left|\omega\left(1+k e^{i \theta}\right)-k e^{i \theta}\right| \geq \gamma,-\pi \leq \theta \leq \pi
$$

Lemma 2.3. ([14]) Let $f \in \mathcal{T C}_{\mathrm{CP}}(k, \gamma)$. Then

$$
b_{n} \leq \frac{1-\gamma}{(1+k) n^{2}-n(k+\gamma)}, n \geq 2
$$

Lemma 2.4. ([14]) Let $f, g \in \mathcal{S}$ with $f \prec g$. Then for $\eta>0$ and $z=r e^{i \theta}$, we have

$$
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta
$$

3. Main Results

We employ the similar technique of Aqlan et al. [1] to find the coefficient estimates for the functions in the class $\mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$.

Theorem 3.1. A function $f \in \mathcal{T}_{\mathbf{C P}}(\delta, k, \gamma, \beta)$, if and only if it satisfies the coefficient conditions

$$
\begin{equation*}
\sum_{n=2}^{\infty}[1-\delta+n \delta]\left[2(1+k) n a_{n}-(k+\beta) b_{n}\right] \leq 2(1-\beta) \tag{3.1}
\end{equation*}
$$

for $0 \leq \delta \leq 1,0 \leq \gamma<1, k \geq 0,0 \leq \beta<1$ and b_{n} is given by

$$
b_{n} \leq \frac{1-\gamma}{(1+k) n^{2}-n(k+\gamma)}, n=2,3, \ldots
$$

Proof. Suppose that $f \in \mathcal{A}$ satisfies the condition given in (3.1). We prove that $f \in \mathcal{T}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$. In view of Lemma 2.1, it is enough to show that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{2\left(1+k e^{i \theta}\right) z F_{\delta}^{\prime}(z)}{(1-\delta) G(z)+\delta z G^{\prime}(z)}-k e^{i \theta}\right\}>\beta,-\pi<\theta<\pi, \tag{3.2}
\end{equation*}
$$

where F_{δ} is given by (1.5), $G(z)=g(z)-g(-z)$, and $g \in \mathcal{C}_{\mathrm{CP}}(\delta, k, \gamma)$. We now consider that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{H(z)}{J(z)}\right\} \geq \beta \tag{3.3}
\end{equation*}
$$

where

$$
\begin{gather*}
H(z)=2 z-2\left(1+k e^{i \theta}\right) \sum_{n=2}^{\infty} n \theta_{n} a_{n} z^{n}+2 k e^{i \theta} \sum_{n=2}^{\infty} \theta_{n} b_{n} z^{n}, \tag{3.4}\\
J(z)=(1-\delta) G(z)+\delta z G^{\prime}(z)=2 z-\sum_{n=2}^{\infty} 2 \theta_{n} b_{n} z^{n}, \theta_{n}=1-\delta+n \delta .
\end{gather*}
$$

To obtain (3.2) or (3.3), in view of Lemma 2.1, we need to prove that (3.6)
$|D(z)|=|N(z)|-|M(z)|=|H(z)+(1-\beta) J(z)|-|H(z)-(1-\beta) J(z)| \geq 0 .(z \in \mathbb{U})$,

Also for H and J as above, we see that
$|N(z)| \geq(4-2 \beta)|z|-\sum_{n=2}^{\infty}\left[2 n a_{n}+2(1-\beta) b_{n}\right] \theta_{n}\left|z^{n}\right|-k \sum_{n=2}^{\infty}\left[2 n a_{n}-2 b_{n}\right] \theta_{n}|z|^{n}$.
Again we consider that

$$
|M(z)| \leq 2 \beta|z|+\sum_{n=2}^{\infty}\left[2 n a_{n}-2(1-\beta) b_{n}\right] \theta_{n}\left|z^{n}\right|+k \sum_{n=2}^{\infty}\left[2 n a_{n}-2 b_{n}\right] \theta_{n}|z|^{n}
$$

or we can write
$-|M(z)| \geq-2 \beta|z|-\sum_{n=2}^{\infty}\left[2 n a_{n}-2(1-\beta) b_{n}\right] \theta_{n}\left|z^{n}\right|-k \sum_{n=2}^{\infty}\left[2 n a_{n}-2 b_{n}\right] \theta_{n}|z|^{n}$.
Keeping in view (3.6),(3.7) and (3.8), we have

$$
\begin{equation*}
|D(z)| \geq 4(1-\beta) r-4 \sum_{n=2}^{\infty}\left[n a_{n}+n k a_{n}-(\beta+k) b_{n}\right] \theta_{n} r^{n} \tag{3.9}
\end{equation*}
$$

For the limiting value of r, that is, $r \longrightarrow 1$ and in view of (3.1) and (3.9), we obtain

$$
|D(z)| \geq 4(1-\beta)-4 \sum_{n=2}^{\infty}\left[n(1+k) a_{n}-(\beta+k) b_{n}\right] \theta_{n} .
$$

Again this inequlity alongwith (3.1) implies (3.6). Hence $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$. Conversely, suppose that $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$. By Lemma 2.2, we have (3.2), i.e.,

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1+k e^{i \theta}\right) \psi(z)-k e^{i \theta}\right\} \geq \beta \tag{3.10}
\end{equation*}
$$

or

$$
\begin{array}{r}
\psi(z)=\frac{2 z F_{\delta}^{\prime}(z)}{(1-\delta) G(z)+\delta z G^{\prime}(z)}=\frac{z-\sum_{n=2}^{\infty} n z^{n} a_{n}-\sum_{n=2}^{\infty} n(n-1) \delta a_{n} z^{n}}{z-\sum_{n=2}^{\infty} \theta_{n} b_{n} z^{n}} \\
=\frac{1-\sum_{n=2}^{\infty} n a_{n} \theta_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} \theta_{n} b_{n} z^{n-1}}
\end{array}
$$

or

$$
\begin{equation*}
\psi(z)-\beta=\frac{2(1-\beta)-2 \sum_{n=2}^{\infty}\left[n a_{n}-\beta b_{n}\right] \theta_{n} z^{n-1}}{2-2 \sum_{n=2}^{\infty} \theta_{n} b_{n} z^{n-1}} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(z)-1=\frac{-2 \sum_{n=2}^{\infty}\left[n a_{n}-\beta b_{n}\right] \theta_{n} z^{n-1}}{2-2 \sum_{n=2}^{\infty} \theta_{n} b_{n} z^{n-1}} \tag{3.12}
\end{equation*}
$$

Using (3.11) and (3.12) in (3.10), we get

$$
\operatorname{Re}\left[\frac{2(1-\beta)-2 \sum_{n=2}^{\infty} \theta_{n}\left[n a_{n}-\beta b_{n}\right] z^{n-1}}{2-2 \sum_{n=2}^{\infty} \theta_{n} b_{n} z^{n-1}}-\frac{2 k e^{i \theta} \sum_{n=2}^{\infty}\left[n a_{n}-b_{n}\right] \theta_{n} z^{n-1}}{2-2 \sum_{n=2}^{\infty} \theta_{n} b_{n} z^{n-1}}\right] \geq 0 .
$$

We choose $z=r>0$ to have

$$
\operatorname{Re}\left[\frac{2(1-\beta)-2 \sum_{n=2}^{\infty}\left[n a_{n}-\beta b_{n}\right] \theta_{n} r^{n-1}}{2-2 \sum_{n=2}^{\infty} \theta_{n} b_{n} r^{n-1}}-\frac{2 k e^{i \theta} \sum_{n=2}^{\infty}\left[n a_{n}-b_{n}\right] \theta_{n} r^{n-1}}{2-2 \sum_{n=2}^{\infty} \theta_{n} b_{n} r^{n-1}}\right] \geq 0
$$

For $\operatorname{Re}\left(-e^{i \theta}\right)>-\left|e^{i \theta}\right|=-1$ and $\theta_{n}=1-\delta+n \delta$, the above inequality becomes

$$
\operatorname{Re}\left[\frac{2(1-\beta)-\sum_{n=2}^{\infty}\left[2(1+k) n a_{n}-(k+\beta) b_{n}\right] \theta_{n} r^{n-1}}{1-\sum_{n=2}^{\infty} \theta_{n} b_{n} r^{n-1}}\right] \geq 0
$$

Again taking $r \longrightarrow 1^{-}$, we get

$$
\sum_{n=2}^{\infty}(1-\delta+n \delta)\left[2(1+k) n a_{n}-(k+\beta) b_{n}\right] \leq 2(1-\beta),
$$

where

$$
b_{n} \leq \frac{1-\gamma}{(1+k) n^{2}-n(k+\gamma)}, n=2,3, \ldots
$$

This completes the proof.
As an immediate consequence of the above Theorem 3.1, we have the following theorem for the coefficients estimates of $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$.

Theorem 3.2. For a function $f: f \in \mathcal{T X}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, we have

$$
a_{n} \leq \frac{(1-\beta)}{(1+k) n(1-\delta+n \delta)}+\frac{(1-\gamma)(k+\beta)}{[2(1+k) n-(k+\beta)](1+k) n^{2}(1-\delta+n \delta)}
$$

for $0 \leq \delta \leq 1,0 \leq \gamma<1, k \geq 0,0 \leq \beta<1$.
Proof. For $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, we use Theorem 3.1 to have

$$
\begin{equation*}
\sum_{n=2}^{\infty} 2(1+k) n(1-\delta+n \delta) a_{n} \leq 2(1-\beta)+(k+\beta) \sum_{n=2}^{\infty}(1-\delta+n \delta) b_{n} \tag{3.13}
\end{equation*}
$$

Using Lemma 2.3 in (3.13), we have

$$
a_{n} \leq \frac{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)}
$$

This implies that

$$
a_{n} \leq \frac{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)} .
$$

The equality holds for the function

$$
f(z)=z-\frac{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)} z^{n}
$$

4. Growth and Distortion Problems

Now we solve the growth problems for functions in the class $\mathcal{T}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$.

Theorem 4.1. If a function $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, then for $z=r \exp (i \theta) \in \mathbb{U}$, we have

$$
\begin{align*}
& r-\left[\frac{(1-\beta)}{2(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{8(1+k)(k-\gamma+2)}\right] r^{2} \\
& \leq|f(z)| \leq r+\left[\frac{1-\beta}{2(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{8(1+k)(k-\gamma+2)}\right] r^{2} \tag{4.1}
\end{align*}
$$

and

$$
\begin{align*}
& 1-\left[\frac{1-\beta}{(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{4(1+k)(k-\gamma+2)}\right] r \\
& \leq|f(z)| \leq r+\left[\frac{1-\beta}{(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{4(1+k)(k-\gamma+2)}\right] r . \tag{4.2}
\end{align*}
$$

Proof. For $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, the inequality (3.1) yields

$$
\begin{gathered}
\sum_{n=2}^{\infty}[1-\delta+n \delta]\left[2(1+k) n a_{n}-(k+\beta) b_{n}\right] \leq 2(1-\beta) \\
4(1+k)(1+\delta) \sum_{n=2}^{\infty} a_{n} \leq 2(1-\beta)+(1+\delta)(k+\beta) \sum_{n=2}^{\infty} b_{n}
\end{gathered}
$$

This implies that

$$
\sum_{n=2}^{\infty} a_{n}<\frac{1-\beta}{2(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{8(1+k)(k-\gamma+2)}
$$

Thus from $|f(z)| \leq|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n}$ with $0<|z|=r<1$, we have

$$
\begin{equation*}
|f(z)| \leq r+\sum_{n=2}^{\infty} a_{n} r^{2} \leq r+\left[\frac{1-\beta}{2(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{8(1+k)(k-\gamma+2)}\right] r^{2} \tag{4.3}
\end{equation*}
$$

Similarly for the lower bounds on the left side of (4.1), we can write

$$
\begin{equation*}
|f(z)| \geq|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n} \geq r-\left[\frac{1-\beta}{2(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{8(1+k)(k-\gamma+2)}\right] r^{2} \tag{4.4}
\end{equation*}
$$

The inequalities (4.3) and (4.4) lead to (4.1). On the same lines, we can find the lower and upper bounds of f^{\prime} which are given by (4.2). The bounds on f and f^{\prime} represented by (4.1) and (4.2) respectively are sharp for the extremal function f given below by (4.5) and its derivative

$$
\begin{equation*}
f(z)=z-\left[\frac{1-\beta}{2(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{8(1+k)(k-\gamma+2)}\right] z^{2}, \quad z= \pm r \tag{4.5}
\end{equation*}
$$

5. Extreme Points

Here we find the extremal points of functions belonging to the newly introduced class.

Theorem 5.1. Let $f_{1}(z)=z$ and
$f_{n}(z)=z-\frac{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)} z^{n}, n \geq 2$,
where $\theta_{n}=1-\delta+n \delta$ and $=1-(-1)^{n}$. Then $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, if and only if it takes the form

$$
f(z)=\sum_{n=2}^{\infty} \mu_{n} f_{n}(z), \text { where } \mu_{n} \geq 0 \text { and } \sum_{n=1}^{\infty} \mu_{n}=1
$$

Proof. Consider

$$
f(z)=\sum_{n=2}^{\infty} \mu_{n} f_{n}(z)=\mu_{1} f_{1}(z)+\sum_{n=2}^{\infty} \mu_{n} f_{n}(z), \quad \mu_{1}=1-\sum_{n=2}^{\infty} \mu_{n}
$$

This proves that
$f(z)=z-\sum_{n=2}^{\infty} \mu_{n} \frac{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)} z^{n}$.
Since
$\sum_{n=2}^{\infty} \mu_{n} \frac{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)} \times$
$\frac{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)}{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}=\sum_{n=2}^{\infty} \mu_{n}=1-\mu_{1} \leq 1$.
Therefore, by Defintion 1.2, we have $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$. Conversely, suppose that $f \in \mathcal{J K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$. Then by Theorem 3.1, we have

$$
a_{n} \leq \frac{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)}, n \geq 2
$$

where $\theta_{n}=1-\delta+n \delta$ and $=1-(-1)^{n}$. By letting $1-\sum_{n=2}^{\infty} \delta_{n}=\delta_{1}$ and

$$
\delta_{n}=\left\{\frac{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}{2(1+k) n\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)}\right\} a_{n}, n \geq 2
$$

we have

$$
\sum_{n=1}^{\infty} \delta_{n} f_{n}(z)=\delta_{1} f_{1}(z)-\sum_{n=2}^{\infty} \delta_{n} f_{n}(z)=f(z)
$$

6. Radius Problems

Theorem 6.1. If $f \in \mathcal{T H}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, then $f \in \mathcal{K}(\mu)$ for $|z|<r_{0}(\delta, k, \gamma, \beta)$, we have

$$
r_{0}=\inf \left\{\frac{(1-\mu) 2(1+k)\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)}{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}\right\}^{\frac{1}{n-1}}
$$

Proof. By a simple computation, we can write

$$
\left|f^{\prime}(z)-1\right|=\left|-\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right| \leq \sum_{n=2}^{\infty} n a_{n}|z|^{n-1} .
$$

For $f \in \mathcal{K}(\mu)$, the class of close-to-convex of order μ, we have the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n}{1-\mu}\right) a_{n}|z|^{n-1} \leq 1 \tag{6.1}
\end{equation*}
$$

For the coefficient condition required by the Theorem 3.1, the inequality (6.1) is true if

$$
|z| \leq\left\{\frac{2(1-\mu)(1+k)\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)}{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}\right\}^{\frac{1}{n-1}}
$$

or we can write

$$
r_{0}=\inf \left\{\frac{2(1-\mu)(1+k)\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)}{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)}\right\}^{\frac{1}{n-1}}
$$

This completes the proof.
Theorem 6.2. If $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, then $f \in \mathcal{S}^{*}(\mu), 0 \leq \mu<1$ for $|z|<r_{1}$, such that
$r_{1}=\inf \left\{\frac{2(1-\mu) n(1+k)\left[(1+k) n^{2}-n(k+\gamma)\right] \theta_{n}}{\left[2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta) \theta_{n}\right](n-\mu)}\right\}^{\frac{1}{n-1}}, n \geq 2$
where $\theta_{n}=1-\delta+n \delta$.

Proof. A simple computation leads to

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|=\left|\frac{z-\sum_{n=2}^{\infty} n a_{n} z^{n}}{z-\sum_{n=2}^{\infty} a_{n} z^{n}}-1\right| \leq \frac{\sum_{n=2}^{\infty}\left(n a_{n}-a_{n}\right)|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
$$

For a starlike function f of order μ, we have the condition:

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n-\mu}{1-\mu}\right) a_{n}|z|^{n-1} \leq 1 \tag{6.2}
\end{equation*}
$$

From the coefficient condition required by the Theorem 3.1, the inequality (6.2) is true if
$|z| \leq\left\{\frac{2(1-\mu) n(1+k)\left[(1+k) n^{2}-n(k+\gamma)\right] \theta_{n}}{\left[2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta) \theta_{n}\right](n-\mu)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2$.
where $\theta_{n}=1-\delta+n \delta$. This expression yields that
$r_{1}=\inf \left\{\frac{2(1-\mu) n(1+k)\left[(1+k) n^{2}-n(k+\gamma)\right] \theta_{n}}{\left[2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta) \theta_{n}\right](n-\mu)}\right\}^{\frac{1}{n-1}}, \quad n \geq 2$.
where $\theta_{n}=1-\delta+n \delta$. This is the desired proof.
Theorem 6.3. If $f \in \mathcal{T K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, then $f \in \mathcal{C}(\mu)$ for $|z|<r_{2}$, where
$r_{2}=\inf \left\{\frac{2(1-\mu) n^{2}(1+k)\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta)}{\left[2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)\right](n-\mu)}\right\}^{\frac{1}{1-n}}, n \geq 2$.
Proof. Consider

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\left|\frac{-\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n} z^{n-1}}\right| \leq \frac{\sum_{n=2}^{\infty} n(n-1) b_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1}} .
$$

For $f \in \mathcal{C}(\mu)$, the class of convex functions of order μ, we have the condition:

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{n-\mu}{1-\mu}\right) n a_{n}|z|^{n-1} \leq 1 \tag{6.3}
\end{equation*}
$$

From the condition required by the Theorem 3.1, the inequality (6.3) is true if
$|z| \leq\left\{\frac{2(1-\mu) n^{2}(1+k)\left[(1+k) n^{2}-n(k+\gamma)\right] \theta_{n}}{\left[2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta) \theta_{n}\right](n-\mu)}\right\}^{\frac{1}{n-1}}, n \geq 2$,
where $\theta_{n}=1-\delta+n \delta$. This expression yields the required result.

7. Integral Means Inequality

In [19], Silverman found that the function $f_{2}(z)=z-\frac{z^{2}}{2}$ is often extremal for the family \mathfrak{T}. He applied this function to resolve his integral means inequality, conjectured in [17] and settled in [18], that is

$$
\int_{0}^{2 \pi}|f(z)|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} d \theta,, f_{2} \in \mathcal{T} \text { and } 0<r<1
$$

In [18], he also proved his conjecture for the subclasses $\mathcal{T}(\gamma)$ and $\mathcal{C}(\gamma)$ of \mathcal{T}. We solve Silverman's conjecture for the class of functions $\mathcal{T}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$. We only need the concept of subordination between analytic functions already defined above and a subordination theorem of Littlewood [8].

Theorem 7.1. If $f \in \mathcal{T H}_{\mathrm{CP}}(\delta, k, \gamma, \beta), 0 \leq \delta \leq 1,0 \leq \beta<1, k \geq 0$ and

$$
\begin{equation*}
f_{2}(z)=z-\left[\frac{1-\beta}{2(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{8(1+k)(k-\gamma+2)}\right] z^{2} \tag{7.1}
\end{equation*}
$$

then for $z=r e^{i \theta}$, and $0<r<1$ we have

$$
\int_{0}^{2 \pi}|f(z)|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} d \theta
$$

Proof. For $f \in \mathcal{T} \mathcal{K}_{\mathrm{CP}}(\delta, k, \gamma, \beta)$, the relation (7.1) is equivalent to
$\int_{0}^{2 \pi}\left|1-\sum_{n=2}^{\infty} a_{n} z^{n-1}\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{(1-\beta) z}{2(1+k)(1+\delta)}-\frac{(1-\gamma)(k+\beta) z}{8(1+k)(k-\gamma+2)}\right|^{\eta} d \theta$.
By Lemma 2.4, it is enough to prove that

$$
1-\sum_{n=2}^{\infty} a_{n} z^{n-1} \prec 1-\left[\frac{1-\beta}{2(1+k)(1+\delta)}+\frac{(1-\gamma)(k+\beta)}{8(1+k)(k-\gamma+2)}\right] z
$$

Suppose that
$1-\sum_{n=2}^{\infty} a_{n} z^{n-1}=1-\frac{(1-\beta) \omega(z)}{2(1+k)(1+\delta)}-\frac{(1-\gamma)(k+\beta) \omega(z)}{8(1+k)(k-\gamma+2)}, \omega(0)=0,|\omega(z)| \leq 1$.
This can be written as
$|\omega(z)| \leq|z| \sum_{n=2}^{\infty} \frac{2(1+k) n^{2}\left[(1+k) n^{2}-n(k+\gamma)\right](1-\delta+n \delta) a_{n}}{2(1-\beta)\left[(1+k) n^{2}-n(k+\gamma)\right]+(1-\gamma)(k+\beta)(1-\delta+n \delta)} \leq|z|$.
This completes the proof by Theorem 3.1.

8. Concluding Remarks and Observations

In this research, we used the idea associated with the conic domains and introduced a new subclass of k-uniformly close-to-convex functions with respect to conjugate points. We study characterization, coefficient estimates, distortion bounds, extreme points and radii problems for this class. We also discussed the integral means inequality with the extremal functions. Our findings may be related with the previously known results.

Acknowlegdments. The Authors would like to thank Worthy Vice Chancellor MUST, Mirpur, AJK for his untiring efforts for the promotion of research conducive environment at MUST.

References

[1] E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, New classes of k-uniformly convex and starlike functions, Tamkang J. Math., 35(3)(2004), 261-266.
[2] R. M. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2(1)(1987), 85-100.
[3] S. Z. H. Bukhari, M. Nazir and M. Raza, Some generalizations of analytic functions with respect to $2 k$-symmetric conjugate points, Maejo Int. J. Sci. Technol., $\mathbf{1 0 (1) (2 0 1 6) , ~ 1 - 1 2 . ~}$
[4] S. Z. H. Bukhari, M. Raza and M. Nazir, Some generalizations of the class of analytic functions with respect to k-symmetric points, Hacet. J. Math. Stat., $45(1)(2016), 1-14$.
[5] S. Z. H. Bukhari, T. Bulboacă and M. S. Shabbir, Subordination and superordination results for analytic functions with respect to symmetrical points, Quaest. Math., 41(1)(2018), 1-15.
[6] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28(1973), 297-326.
[7] S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64(5)(2014), 1183-1196.
[8] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(1)(1925), 481-519.
[9] N. Magesh, Ş. Altinkaya, and S. Yalçin, Certain Subclasses of k-uniformly starlike functions associated with symmetric q-derivative operator, J. Comput. Anal. Appl., 24(8)(2018), 1464-1473.
[10] S. S. Miller and P. T. Mocanu, Differential subordinations: theory and applications, Marcel Dekker, Inc., New York(2000).
[11] R. Parvatham and S. Radha, On starlike and close-to-convex functions with respect to n-symmetric points, Indian J. Pure Appl. Math., $\mathbf{1 7 (9)}(1986), 1114-1122$.
[12] V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20(1)(2004), 31-37.
[13] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72-75.
[14] C. Selvaraj and K. A. Selvakumaran, New classes of k-uniformly convex and starlike functions with respect to other points, Acta Math. Univ. Comenianae, 48(1) (2009), 103-114.
[15] B. Şeker, M. Acu, and S. S. Eker, Subclasses of k-uniformly convex and k-starlike functions defined by Salagean operator, Bull. Korean Math. Soc., 48(1)(2011), 169-182.
[16] T. N. Shanmugam, C. Ramachandran and V. Ravichandran, Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc., 43(3)(2006), 589-598.
[17] H. Silverman, A survey with open problems on univalent functions whose coefficients are negative, Rocky Mountain J. Math., 21(3)(1991), 1099-1125.
[18] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math., 23(1)(1997), 169-174.
[19] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
[20] H. M. Srivastava, S. Z. H. Bukhari and M. Nazir, A subclass of alpha -convex function with respect to $(2 j, k)$-symmetric conjugate points, Bull. Iran. Math. Soc., 44(5)(2018), 1227-1242.
[21] Z. -G. Wang, A new subclass of quasi-convex functions with respect to k symmetric points, Lobachevskii J. Math., 19(2005), 41-50.

