DOI QR코드

DOI QR Code

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin (Department of Mathematics, Duzce University) ;
  • Mert, Oya (Department of Mathematics, Tekirdag Namik Kemal University) ;
  • Yildiz, Ismet (Department of Mathematics, Duzce University)
  • Received : 2021.11.24
  • Accepted : 2021.12.05
  • Published : 2022.03.25

Abstract

This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.

Keywords

References

  1. L. Bieberbach, Uber die Koef fizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, S. B. Preuss. Akad. Wiss. 38 (1916), 940-955.
  2. L. de Branges de Bourcia, A proof of the Biberbach conjecture, Acta Math. 154 (1985), 137-152. https://doi.org/10.1007/BF02392821
  3. C. Caratheodory, Theory of Functions of a Complex Variable,Vols.I-II, Chelsea Pub. Co., New York Inc, 1960.
  4. P.L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
  5. C.F. Gauss, Disquisitiones generales circa seriem infinitam, Ges. Werke vol.3, pp. 123-163, 1866.
  6. R.M. Goel and N.S. Sohi, Multivalent functions with negative coecients, Indian J. Pure Math. 12 (1981), 844-853.
  7. A.W. Goodman, On uniformly convex functions, Annales Polonici Mathematici 56 (1991), 87-92. https://doi.org/10.4064/ap-56-1-87-92
  8. A.W. Goodman, Univalent Functions, Volume 1, Mariner Publishing Company, Inc., Florida, 1983.
  9. P. Koebe, Ueber die Uniformisierung beliebiger analytischer Kurven, Gottingen, 191-210, 1907.
  10. M. Mateljevic, Quasiconformal and Quasiregular harmonic analogues of Koebe's Theorem and Applications, Ann. Acad. Sci. Fenn. 32 (2007), 301-315.
  11. E.P. Merkes and W.T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc. 12 (1961), 885-888. https://doi.org/10.1090/S0002-9939-1961-0143950-1
  12. S.S. Miller and P.T. Mocanu, Univalence of gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc. 110 (1990), 333-342. https://doi.org/10.2307/2048075
  13. S. Owa and H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077. https://doi.org/10.4153/CJM-1987-054-3
  14. L.A. Pochhammer, Zur theorie der Euler'schen integrale, Math. Ann. 35 (1890), 495-526. https://doi.org/10.1007/BF02122658
  15. S. Ponnusamy, Hypergeometric transforms of functions with derivative in a half plane, J. Comput.Appl. Math. 96 (1998), 35-49. https://doi.org/10.1016/S0377-0427(98)00090-9
  16. B. Riemann, Grundlagen fur eine allgemeine Theorie der Functionen einer veranderlichen complexen Grosse, Gottingen, 1851.
  17. M.S. Robertson, Certain classes of starlike functions, Michigan Mathematical Journal 32 (1985), 135-140. https://doi.org/10.1307/mmj/1029003181
  18. S. Ruscheweyh, New criteria for Univalent Functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. https://doi.org/10.1090/S0002-9939-1975-0367176-1
  19. S. Ruscheweyh and T. Sheil-Small, Hadamard product of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135. https://doi.org/10.1007/BF02566116
  20. St. Ruscheweyh and V. Singh, On the order of starlikeness of hypergeometric functions, J. Math. Anal. Appl. 113 (1986), 1-11. https://doi.org/10.1016/0022-247x(86)90329-x
  21. N. Shukla and P. Shukla, Mapping properties of analytic function defined by hypergeometric function II, Soochow 1 (1999), 29-36.
  22. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math.Soc. 51 (1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  23. H. Silverman and E.M. Silvia, Fixed coefficients for subclasses of starlike functions, Houston. J. Math. 7 (1997), 129-136.
  24. L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
  25. R. Vidunas, Transformations of Gauss hypergeometric functions, J. Computational and Applied Math. 178 (2005), 473-487. arxiv: math.CA/0310436. https://doi.org/10.1016/j.cam.2004.09.053