• Title/Summary/Keyword: uniaxial strain

Search Result 514, Processing Time 0.027 seconds

Viscoplastic Constitutive Equations for Ratchetting Behavior (라체팅 거동에 대한 점소성 구성방정식)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.466-472
    • /
    • 2005
  • Inelastic deformation behavior of metals and alloys is considered rate dependent. Uniaxial ratcheting experiments performed by Ruggles and Krempl, and Hassan and Kyriakides exhibited that higher mean stress for a fixed stress amplitude resulted in higher ratchet strain within a rate independent framework and higher stress rate resulted in lower ratchet strain, respectively. These phenomena are qualitatively investigated by numerical experiments through unified viscoplasticity theory. The theory does not separate rate-independent plasticity and rate-dependent creep, and thus uses only one inelastic strain to describe inelastic deformation processes with the concept of the yield surface. The growth law for the kinematic stress, which is a tensor valued state variable of the constitutive equations, is modified to predict the linear evolution of long-term ratchet strain.

Mechanical Properties of Aluminium Alloy with Cellular Structure. (미세기공 알루미늄 소재의 기계적 성질)

  • 윤성원;이승후;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.695-698
    • /
    • 2002
  • Induction heating process is one of the most efficient heating process in terms of temperature control accuracy and heating time saving. In the past study, fabrication process of cellular 6061 alloys by powder metallurgical route and induction heating process was studied. To supplement the framing conditions that studied in past study, effect of induction heating capacity and holding time at foaming temperature were investigated. Under the achieved framing conditions, teamed 6061 alloys were fabricated for variation of foaming temperature, and porosities(%)-foaming temperature curves were obtained by try-error experimental method. Uniaxial compression tests were performed to investigate the relationship between porosities(%) and stress-strain curves of framed 6061 alloy. Also, energy absorption capacity and efficiency were calculated from stress-strain curves to investigated. Moreover, dependence of plateau stress on strain rate was investigated in case of cellular 6061 alloy with low porosities(%)

  • PDF

A Study on the Relations Between Fracture Strain and Elastic-Plastic Fracture Toughness (탄소성 파괴 인성과 파괴변형률에 관한 연구)

  • 임만배;최재강
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.89-97
    • /
    • 1998
  • In this study, under large scale yielding conditions crack propagation is found to governed by parameters based on the J-integral or on the crack opening displacement. But initiation of crack propagation of ductile material seems to be controlled by just on parameter that is the strain. The relationship between the critical value of J-integral and the local fracture strain in uniaxial tensile test in the region of maximum reduction in area. Therefore, the fundamental theorectical equation by the proposed elastic-plastic fracture toughness and the local fracture strain has a merit. in comparison with the ASTM method, which can measure by using the load-displacement curve and the specimens in tenslie test.

  • PDF

A Study on the Relations Between Fracture Strain and Elastic-Plastic Fracture Toughness (탄소성파괴인성과 파괴변형률에 관한 연구)

  • 최재강;임만배
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.25-33
    • /
    • 1998
  • In this study, under large scale yielding conditions crack propagation is found to governed by parameters based on the J-integral or on the crack opening displacement. But initiation of crack propagation of ductile material seems to be controlled by just on parameter that is the strain. The relationship between the critical value of J-integral and the local fracture strain in uniaxial tensile test in the region of maximum reduction in area. Therefore, the fundamental theoretical equation by the proposed elastic-plastic fracture toughness and the local fracture strain has a merit, in comparison with the ASTM method, which can measure by using the load-displacement curve and the specimens in tensile test.

  • PDF

Stress-Strain Relationship of Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 콘크리트 막요소의 응력-변형률 관계)

  • Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.93-100
    • /
    • 2001
  • A stress-strain relationship for reinforced concrete membrane elements subjected to reversed cyclic loading is quite different to that of concrete cylinder subjected to uniaxial compression. The compressive strength of cracked concrete membrane elements is reduced by cracking due to tension in the perpendicular direction. Based on the three reinforced concrete panel tests, a softened stress-strain curve of concrete subjected to reversed cyclic loading is proposed. The proposed model consists of seven stages in the compressive zones and six stages in the tensile zones. The proposed model is verified by comparing to the test results.

  • PDF

The Dependence of Mechanical Strain on a-Si:H TFTs and Metal Connection Fabricated on Flexible Substrate

  • Lee, M.H.;Ho, K.Y.;Chen, P.C.;Cheng, C.C;Yeh, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.439-442
    • /
    • 2006
  • We evaluated a-Si:H TFTs fabricated on polyimide substrate (PI) at the highest temperature of $160^{\circ}C$ with uniaxial and tensile strain to imitate flexible display. With tensile strain, the threshold voltage of a-Si:H TFTs have positive shift due to extra dangling bond formation in a-Si:H layer. However, no significant degradation of the subthreshold swing and effective mobility with tensile strain of a-Si:H TFTs indicates the similar level of band tail state. The metal wire with the width of $10\;{\mu}m$ for connection on flexible substrate can sustain with curvature radius 2.5 cm.

  • PDF

Rate-sensitive analysis of framed structures Part I: model formulation and verification

  • Izzuddin, B.A.;Fang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.221-237
    • /
    • 1997
  • This paper presents a new uniaxial material model for rate-sensitive analysis addressing both the transient and steady-state responses. The new model adopts visco-plastic theory for the rate-sensitive response, and employs a three-parameter representation of the overstress as a function of the strain-rate. The third parameter is introduced in the new model to control its transient response characteristics, and to provide flexibility in fitting test data on the variation of overstress with strain-rate. Since the governing visco-plastic differential equation cannot be integrated analytically due to its inherent nonlinearity, a new single-step numerical integration procedure is proposed, which leads to high levels of accuracy almost independent of the size of the integration time-step. The new model is implemented within the nonlinear analysis program ADAPTIC, which is used to provide several verification examples and comparison with other experimental and numerical results. The companion paper extends the three-parameter model to trilinear static stress-strain relationships for steel and concrete, and presents application examples of the proposed models.

A Study on the Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement. (콘크리트 포장 축소모델 배합의 재료적 상사성에 관한 연구)

  • 배주성;고영주;김재경;김평수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.103-110
    • /
    • 1997
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate materials similitude between the prototype and the model concrete. Based on th results of experiments, We compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-strain curves of prototype concrete, it is important that various mix as of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

  • PDF

Formulation of Special Constitutive Equations for Inelastic Responses of Porous Metals(II) - Elastic, Plastic Strain Hardening Material - (다공질 금속의 비탄성거동을 위한 특수 구성방정식의 형성 II)

  • Kim, K.T.;Suh, J.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 1988
  • A special set of constitutive equations is formulated to predict elastic-plastic strain hardening responses of porous metals. Including the effect of the material's strain hardening in the yield function, the constitutive equations are capable of showing no dip phenomena in uniaxial strain compression and prediction work-hardening response for plastically precyled porous metal. The proposed constitutive equations are compared with experimental data for porous tungsten.

Cracking behavior of RC shear walls subject to cyclic loadings

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.77-98
    • /
    • 2004
  • This paper presents a numerical model for simulating the nonlinear response of reinforced concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concrete is described by an orthotropic constitutive relation with tension-stiffening and compression softening effects defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making analytical predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing factors inducing the material nonlinearities have been considered. A simple hysteretic stress-strain relation of concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic stress-strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ratio and to represent an average stress distribution in a cracked RC element, respectively. To assess the applicability of the constitutive model for RC element, analytical results are compared with idealized shear panel and shear wall test results under monotonic and cyclic shear loadings.