• 제목/요약/키워드: underground temperature

검색결과 612건 처리시간 0.029초

지중온도를 이용한 지하공간 벽체의 난방부하 계산에 관한 연구 (A study about caculating the heating load of the wall of underground space to be used undereground temperature)

  • 정수일
    • 한국태양에너지학회 논문집
    • /
    • 제28권1호
    • /
    • pp.19-24
    • /
    • 2008
  • The energy crisis is culminating for the life of the fossil fuel in the future which is come to end at $30{\sim}40$ years. Moreover above 90% of the energy in our country depend on importing and the crisis is more seγious than it of other countries. So architects devote low energy house research and it means underground space research have become public opinion. But there is not an accurate and utility method calculating the heating load of underground space. In this study it is proposed that the heating load is calculated by setting adiabatic thichness of soil and predicting underground temperature. The prediction of the underground temperature is calculated by the latitude, the level, the distance from sea, the condition of earth surface.

부산시내 지하생활권의 공기오염도와 온열인자에 관한 조사연구 (A Study on Air Pollution and Thermal Factors in Underground Shopping Center of Pusan Area)

  • 최성용;문덕환;이종태;송인혁;이채언;이승민
    • Journal of Preventive Medicine and Public Health
    • /
    • 제27권3호
    • /
    • pp.505-516
    • /
    • 1994
  • For the purpose of preparing the fundamental data on air pollution in underground shopping center and also contributing to the health improvement of residents, the authors measured the level of $SO_2,\;NO_2,\;TSP,\;CO,\;CO_2$ and also some related factors as air temperature, air movement, relative humidity and mean radiation temperature at inside and outside of underground shopping center in Pusan from January to February and from July to August 1994. The results were as follows : 1. The mean concentration of CO within the underground shopping center was $3.1{\pm}1.3ppm$ in winter and $2.1{\pm}0.9ppm$ in summer. There was a negative correlation (p<0.01) between inner CO concentration and temperature in summer and no correlation between inner CO concentration and outer CO concentration in underground shopping center 2. The mean concentration of COE within the underground shopping center was $876{\pm}353ppm$ in winter and $757{\pm}125ppm$ in summer. There was a negative correlation (p<0.01) between inner $CO_2$ concentration and air movement in summer and positive correlation (p<0.05) between inner $CO_2$ concentration and outer $CO_2$ concentration in underground shopping center. 3. The mean concentration of $SO_2$ within a underground shopping center was $0.036{\pm}0.019ppm$ in winter and $0.040{\pm}0.013ppm$ in summer. There was a positive correlation(p<0.01) between inner $SO_2$ concentration and temperature in summer and positive correlation between inner $SO_2$ concentration and outer $SO_2$ concentration in summer and winter in underground shopping center. 4. The mean concentration of $NO_2$ within a underground shopping center was $0.052{\pm}0.038ppm$ in winter and $0.042{\pm}0.016ppm$ in summer. There was a no correlation between inner $SO_2$ concentration and thermal factors in summer and winter and low correlation between inner $SO_2$ concentration and outer $SO_2$ concentration in underground shopping center 5. The mean concentration of TSP within a underground shopping center was $430{\pm}214{\mu}g/m^3$ in winter, $366{\pm}73{\mu}g/m^3$ in summer, and very in excess of the atmospheric environmental quality standards of Korea ($150{\mu}g/m3{\downarrow}$). There was low correlation between inner TSP concentration and temperature in summer and high correlation between inner TSP concentration and outer TSP concentration in underground shopping center.

  • PDF

지하거주공간의 연간 열환경에 관한 연구 (A Study on the Yearly Thermal Environmental Characteristics in Underground Space)

  • 정효민;정한식
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.27-33
    • /
    • 1998
  • The room temperature and air conditioning load in the underground space have been investigated numerically by the unsteady heat conduction equation. The model room has 3 m in height and 10 m in width, and it's position in the underground depth are 0.5 m to 5 m. When the room was located around surface, the room temperatures were strongly influenced by the atmosphere. But the underground depth is more than 2 m, the yearly temperature amplitude was small and the temperature phase was delayed. Up to 5 m of the depth, the cooling and heating load was decreased rapidly, but over 10 m of the depth, the air conditioning load was constant.

  • PDF

CHARACTERISTICS OF SMOKE CONCENTRATION PROFILES WITH UNDERGROUND UTILITY TUNNEL FIRE

  • Kim Hong Sik;Hwang In Ju;Kim Youn-Jea
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.94-98
    • /
    • 2005
  • Accurate prediction of the fire-induced air velocity, temperature and smoke flow in underground utility tunnel becomes more important for the optimization of design and placement of heat and smoke detectors. In order to improve the safety of underground utility tunnel systems, the behaviors of fire-induced smoke flow and temperature distributions are investigated. Especially, two different cross-sectional shapes of tunnel, such as rectangular and circular types are modeled. Also, fire source is modeled as a volumetric heat source. Three-dimensional thermal-flow characteristics in an underground tunnel are solved by means of FVM using SIMPLE algorithm. The effects of shape geometry on the fire-induced flow characteristics are graphically depicted. It is desirable that heat and smoke detectors are installed on the cables and the top of the wall.

건축물의 지하공간을 위한 단열재의 특성 분석 및 설계 기준 수립 (Establishment of Design Standard and Analysis of Insulation Property for Underground Space in Architecture)

  • 황민규;조우진;김강수
    • KIEAE Journal
    • /
    • 제13권2호
    • /
    • pp.107-112
    • /
    • 2013
  • The purpose of this study is to analyze an insulation property and to establish a design standard for the underground space in architecture. Insulation materials for this study are 12 kinds of Insulation which qualified KS standards(3 classes of EPS type 1, 3 classes of EPS type 2(Neopor), 3 classes of XPS and 3 classes of PU Boards). For insulation materials of underground space, insulating and water tightening property are desired. So conductivity for insulating and water absorption for water tightening are measured in this study. Temperature, insulation is exposed to in the underground space, is different from temperature above the ground. Conductivity is measured in a temperature of $17^{\circ}C$, $20^{\circ}C$, $23^{\circ}C$ and $26^{\circ}C$. In KS standards, water absorption are measure after 24 hours, but insulation is exposed to water for a long time in the underground. So after 110 days, water absorption are measured. As time goes by, increasing of water absorption means decreasing of water tightening and insulating. So after water absorption had measured for 110 days, conductivity has measured again. As a result, XPS is selected as optimized insulation for underground. And Conductivity of XPS insulation with water should be added by 20%.

지하 구조물용 비노출형 방수재의 외부환경에 따른 방수재의 성능 변화 요구 (Waterproofing Materials According to the External Environment of Non-exposed Waterproofing Materials for Underground Structures Performance Change Requirement)

  • 정석주;송제영;원승재;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.85-86
    • /
    • 2020
  • In securing durability of underground structure non-exposed waterproof materials, the company aims to improve durability of waterproof materials by studying more realistic weather conditions than KS standards and developers' durability standards. Analyzing the actual climate data in Korea and the temperature of the basement layer, it is a waterproofing sheet method, a self-adhesive sheet method in which a film and a compound, which are currently widely used as underground water-proofing, and a self-adhesive waterproofing sheet method, etc. We would like to present the guidelines necessary to prevent the temperature situation and waterproof defects that are ideal for setting the endurance conditions later.

  • PDF

지하철 역사 지하수를 이용한 에어와셔에 관한 연구 (Study on Air Washer using Underground Water in the Subway Stations)

  • 김동규;김회률;정용현;김종열;금종수
    • 수산해양교육연구
    • /
    • 제22권4호
    • /
    • pp.604-610
    • /
    • 2010
  • Busan subway transportation system has been established a key role in the society last 20 years. However many people are suffering from hot and humid environment at subway station and platform due to deteriorated ventilation system as well as insufficient air conditioning system in existing stations and platforms. As a result, these systems require revitalization. There is about 5400tons of low temperature underground water is generated from subway stations every day. By using this method and air washer we are trying to lower the temperature. Air washer is commonly used for removing humidity but in this experiment it will be used as air precooling. This research offers result of experiment using air washer system to lower the temperature in large spaces like subway station. The experiment result has shown when L/G was the same, at condition which water spray temperature at $18^{\circ}C$ resulting inlet and outlet temperature difference larger. Also, in the same water spray temperature conditions, larger L/G condition showed a greater temperature difference. LCC evaluation of both system were shown that air washer system of using underground water will save 53% of the initial cost than refrigeration system, and save 75% of operating cost.

온실 내 토양소독을 위한 지중난방시스템의 지중 열전달 특성 (Underground Heat Transfer Characteristics of the Underground Heating System for Soil Sterilization in Greenhouse)

  • 박경규;하유신;홍동혁;장승호;김진현
    • Journal of Biosystems Engineering
    • /
    • 제35권2호
    • /
    • pp.108-115
    • /
    • 2010
  • This study was conducted to estimate the optimum temperature and required time for soil sterilization when heated water was circulated through underground heating pipes in the greenhouse which solar heat was influenced to the temperature of soil during the summer day. Two different types of heating pipes were used for the experiment. One was a polyethylene pipe(XL) and the other was a corrugated ring shaped stainless steel pipe(STS). The results of the studies were summarized as follows; By measuring the thermal characteristics of the XL and STS, it was examined that the average temperature differences of the inlet and outlet were $8.5^{\circ}C$ and $13.3^{\circ}C$, the average flowrates were 15.3 L/min and 5.6 L/min, and the average radiation powers were 9.1 kW and 4.1 kW, respectively. As results of the regression analysis of underground temperatures, when average soil temperature was$35^{\circ}C$, an average water temperature was $80^{\circ}C$, and XL was used, it was estimated that the possible heat transfer distance, the required time for heat transfer and heat flux to reach the underground temperature of $60^{\circ}C$ were 300 mm, 230 hours, and $7.57kW/m^2$, respectively.

천층 토양 내 지중온도 변동 특성과 수치모델 평가 (Fluctuation Features and Numerical Model for Underground Temperature in Shallow Subsurface Soil)

  • 정재훈;김규범;박승기;김형수;김태형
    • 한국지반환경공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.35-42
    • /
    • 2015
  • 본 연구는 충남 예산지역의 산림 토양에 대해 심도별 지중온도를 관측하고 기후 및 토양의 침투 특성에 따른 지중온도의 변화를 분석하였으며, 대기온도와 토양의 열물성치를 수치 해석적 모델에 적용하여 지중온도의 변화를 모사하였다. 심도별(20, 50, 100cm) 계측 자료를 분석한 결과 50cm 이내의 지중온도는 대기온도의 직접적인 영향을 받아 온도의 변동 폭이 크고 뚜렷하며, 100cm 심도에서는 완만하면서 작은 진동 폭을 갖는다. 연구 기간 동안의 지중온도 변화량은 지층의 수리전도도와 약한 정의 상관관계를 갖고 있어 물의 흐름이 대기온도의 전달을 용이하게 하는 것으로 파악된다. 수치모델에 의한 지중온도 예측 결과는 실측 자료와 약 0.99의 교차상관계수를 보이고 있어 매우 유사한 것으로 나타났다. 앞으로 불포화 토양의 수리전도도와 지하수 함양량을 추정하는데 수치모델을 이용한 대수층의 지중온도 예측 결과를 사용할 수 있을 것으로 기대된다.

공동주택 지하주차장의 벽체(壁體) 표면결로방지(表面結露防止)를 위한 적정 공법 선정에 관한 연구 (A Study on the Adoption of optimum Construction Method to prevent Condensation on the wall of Underground Parking Lot in Apartment Project)

  • 오길환;이일재;김성규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.101-104
    • /
    • 2007
  • Currently most of underground structures in domestic apartment projects are being designed for parking lot and essential parking area is growing due to the increase in car-holding number per household. Moreover, most underground parking lots of today are combined with basement, therefore a pleasant environment in underground space is strongly needed for the dwellers' use. However, there always occur high percentage of humidity and surface condensation in underground parking lot because of the nature of underground structure and they are having a bad influence on the comfort and health of dwellers. Therfore, this study is planned to compare and examine the porformance and properties of currently used construction methods to prevent condensation and finally present the most suitable method.

  • PDF