References
- Behaegel, M., Sailhac, P. and Marquis, G. (2007), On the use of surface and ground temperature data to recover soil water content information, Journal of Applied Geophysics, Vol. 62, No. 3, pp. 234-243. https://doi.org/10.1016/j.jappgeo.2006.11.005
- Bendjoudi, H., Cheviron, B., Guerin, R. and Tabbagh, A. (2005), Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: test of the method with Voyons(Aube, France) experimental data, Hydrological Processes, Vol. 19, No. 18, pp. 3735-3745. https://doi.org/10.1002/hyp.5856
- Cha, J. H., An, S. J., Koo, M. H., Kim, H. C., Song, Y. H. and Suh, M. S. (2008), Effects of porosity and water content on thermal conductivity of soils, Journal of Soil and Groundwater Environment, Vol. 13, No. 3, pp. 27-36 (in Korean).
- Cheviron, B., Guerin, R., Tabbagh, A. and Bendjoudi, H. (2005), Determining long-term effective groundwater recharge by analyzing vertical soil temperature profiles at meteorological stations, Water Resources Research, Vol. 41, No. 9, pp. 1-6.
- Cho, H. N., Lee, D. H. and Jeong, G. C. (2012), Efficiency of geothermal energy generation assessed from measurements of deep depth geothermal conductivity, The Journal of Engineering Geology, Vol. 22, No. 2, pp. 233-241 (in Korean). https://doi.org/10.9720/kseg.2012.22.2.233
- Dakshanamurthy, V. and Fredlund, D. G. (1981), A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients, Water Resources Research, Vol. 17, No. 3, pp. 714-722. https://doi.org/10.1029/WR017i003p00714
- Diersch, H. J. G. (2002), FEFLOW-Reference Manual, WASY Software, 490 p.
- Hu, Q. and Feng, S. (2003), A daily soil temperature and soil temperature climatology of contiguous united states, Journal of Applied Meteorology, Vol. 42, No. 8, pp. 1139-1156. https://doi.org/10.1175/1520-0450(2003)042<1139:ADSTDA>2.0.CO;2
- Huang, S., Pollack, H. N. and Shen, P. Y. (2000), Temperature trends over the past five centuries reconstructed from borehole temperatures, Nature, Vol. 403, pp. 756-758. https://doi.org/10.1038/35001556
- Jeong, S. I. (2004), A study on the comparison of measurement and prediction of underground temperature in Gumi, Journal of the Korean Housing Association, Vol. 15, No. 4, pp. 99-105 (in Korean).
- KIGAM (Korea Institute of Geoscience and Mineral Resources) (2004), Characterization and utilization of geothermal resources in Korea, pp. 17-18 (in Korean).
- Kim, J. S., Cha, J. H., Song, S. H. and Jeong, G. C. (2014), Numerical simulations for optimal utilization of geothermal energy under groundwater-bearing conditions, The Journal of Engineering Geology, Vol. 24, No. 4, pp. 487-499 (in Korean). https://doi.org/10.9720/kseg.2014.4.487
- Kim, S. O., Suh, M. S. and Kwak, C. H. (2005), Climatological characteristics in the variation of soil temperature in Korea, Journal of Korean Earth Science Society, Vol. 26, No. 1, pp. 93-105 (in Korean).
- Koo, M. H., Kim, Y. J., Suh, M. C. and Suh, M. S. (2003), Estimating thermal diffusitivity of soils in Korea using temperature time series data, Journal of the Geological Society of Korea, Vol. 39, No. 3, pp. 301-317 (in Korean).
- Koo, M. H., Song, Y. H. and Lee, J. H. (2006), Analyzing spatial and temporal variation of ground surface temperature in Korea, Economic and Environmental Geology, Vol. 39, No. 3, pp. 255-268 (in Korean).
- MOCT (Ministry of Construction and Transportation), KWRC (Korea Water Resources Corporation) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2007), The report of groundwater basic investigations of Yesan area, pp. 10-11 (in Korean).
- Na, J. Y., Yu, S. H. and Seo, J. W. (2000), Seasonal variations of the heat flux in muddy intertidal sediments near the Jebu island during the ebb tides in the west coast of Korea, Ocean Science Journal, Vol. 5, No. 1, pp. 1-9 (in Korean).
- RDA (Rural Development Administration) (2006), Korean soil information system, http://soil.rda.go.kr/webgis/webgis.jsp (in Korean).
- Scanlon, B, R., Healy, R. W. and Cook, P. G. (2002), Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeology Journal, Vol. 10, Issue 1, pp. 18-39. https://doi.org/10.1007/s10040-001-0176-2
- Soil Moisture Equipment Corp. (1991), Model 2800KI Guelph Permeameter : Operating Instructions, Santa Barbara, CA 93105, USA, p. 28.
- Tabbagh, A., Bendjoudi, H. and Benderitter, Y. (1999), Determination of recharge in unsaturated soils using temperature monitoring, Water Resources Research, Vol. 35, No. 8, pp. 2439-2446. https://doi.org/10.1029/1999WR900134
- Taniguchi, M. (2010), Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperaturedepth profiles, Water Resources Research, Vol. 29, Issue 7, pp. 2021-2026. https://doi.org/10.1029/93WR00541
- Taniguchi, M. and Sharma, M. L. (1993), Determination of groundwater recharge using the change in soil temperature, Journal of Hydrology, Vol. 148, Issues 1-4, pp. 219-229. https://doi.org/10.1016/0022-1694(93)90261-7
- Uhm, S. H. and Lee, M. S. (1963), The geological map of Taehung (1:50,000), Geological Survey of Korea (in Korean).
Cited by
- Sensitivity Analysis of the Design Factor for Vertical Closed-loop Geothermal System using Numerical Analysis : Focused on Heating Operation vol.18, pp.5, 2018, https://doi.org/10.12813/kieae.2018.18.5.055
- Temperature Prediction of Road Anti-Frost Layer vol.19, pp.7, 2019, https://doi.org/10.9798/kosham.2019.19.7.39
- Temperature Prediction of Anti-frost Layer using Machine Learning Techniques vol.20, pp.1, 2015, https://doi.org/10.9798/kosham.2020.20.1.9