DOI QR코드

DOI QR Code

Fluctuation Features and Numerical Model for Underground Temperature in Shallow Subsurface Soil

천층 토양 내 지중온도 변동 특성과 수치모델 평가

  • Received : 2015.02.11
  • Accepted : 2015.04.09
  • Published : 2015.05.01

Abstract

This is conducted to observe underground temperature and to analyze its change affected by climate condition and soil infiltration in the mountainous area, Yesan region, Chungcheong-namdo province. Additionally, underground temperature change is also simulated using air temperature and soil thermal properties with a numerical model. Soil temperature monitoring data acquired from each depth, 20 cm, 50 cm, and 100 cm, indicates that the data within 50 cm in depth shows peak-shaped big fluctuation directly affected by air temperature and it at 100 cm has open-shaped small fluctuation. Underground temperature variation, a difference between high and low values, during monitoring period is weakly proportional to hydraulic conductivity of the sediment and it is assumed that water plays a part in delivering air temperature in soil. The underground temperature estimated by a numerical model is very similar to the observed data with an average value of 0.99 cross-correlation coefficient. From the result of this study, the aquifer unsaturated hydraulic conductivity of the soil and the groundwater recharge is likely to be able to estimate with underground temperature profile calculated using a numerical model.

본 연구는 충남 예산지역의 산림 토양에 대해 심도별 지중온도를 관측하고 기후 및 토양의 침투 특성에 따른 지중온도의 변화를 분석하였으며, 대기온도와 토양의 열물성치를 수치 해석적 모델에 적용하여 지중온도의 변화를 모사하였다. 심도별(20, 50, 100cm) 계측 자료를 분석한 결과 50cm 이내의 지중온도는 대기온도의 직접적인 영향을 받아 온도의 변동 폭이 크고 뚜렷하며, 100cm 심도에서는 완만하면서 작은 진동 폭을 갖는다. 연구 기간 동안의 지중온도 변화량은 지층의 수리전도도와 약한 정의 상관관계를 갖고 있어 물의 흐름이 대기온도의 전달을 용이하게 하는 것으로 파악된다. 수치모델에 의한 지중온도 예측 결과는 실측 자료와 약 0.99의 교차상관계수를 보이고 있어 매우 유사한 것으로 나타났다. 앞으로 불포화 토양의 수리전도도와 지하수 함양량을 추정하는데 수치모델을 이용한 대수층의 지중온도 예측 결과를 사용할 수 있을 것으로 기대된다.

Keywords

References

  1. Behaegel, M., Sailhac, P. and Marquis, G. (2007), On the use of surface and ground temperature data to recover soil water content information, Journal of Applied Geophysics, Vol. 62, No. 3, pp. 234-243. https://doi.org/10.1016/j.jappgeo.2006.11.005
  2. Bendjoudi, H., Cheviron, B., Guerin, R. and Tabbagh, A. (2005), Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: test of the method with Voyons(Aube, France) experimental data, Hydrological Processes, Vol. 19, No. 18, pp. 3735-3745. https://doi.org/10.1002/hyp.5856
  3. Cha, J. H., An, S. J., Koo, M. H., Kim, H. C., Song, Y. H. and Suh, M. S. (2008), Effects of porosity and water content on thermal conductivity of soils, Journal of Soil and Groundwater Environment, Vol. 13, No. 3, pp. 27-36 (in Korean).
  4. Cheviron, B., Guerin, R., Tabbagh, A. and Bendjoudi, H. (2005), Determining long-term effective groundwater recharge by analyzing vertical soil temperature profiles at meteorological stations, Water Resources Research, Vol. 41, No. 9, pp. 1-6.
  5. Cho, H. N., Lee, D. H. and Jeong, G. C. (2012), Efficiency of geothermal energy generation assessed from measurements of deep depth geothermal conductivity, The Journal of Engineering Geology, Vol. 22, No. 2, pp. 233-241 (in Korean). https://doi.org/10.9720/kseg.2012.22.2.233
  6. Dakshanamurthy, V. and Fredlund, D. G. (1981), A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients, Water Resources Research, Vol. 17, No. 3, pp. 714-722. https://doi.org/10.1029/WR017i003p00714
  7. Diersch, H. J. G. (2002), FEFLOW-Reference Manual, WASY Software, 490 p.
  8. Hu, Q. and Feng, S. (2003), A daily soil temperature and soil temperature climatology of contiguous united states, Journal of Applied Meteorology, Vol. 42, No. 8, pp. 1139-1156. https://doi.org/10.1175/1520-0450(2003)042<1139:ADSTDA>2.0.CO;2
  9. Huang, S., Pollack, H. N. and Shen, P. Y. (2000), Temperature trends over the past five centuries reconstructed from borehole temperatures, Nature, Vol. 403, pp. 756-758. https://doi.org/10.1038/35001556
  10. Jeong, S. I. (2004), A study on the comparison of measurement and prediction of underground temperature in Gumi, Journal of the Korean Housing Association, Vol. 15, No. 4, pp. 99-105 (in Korean).
  11. KIGAM (Korea Institute of Geoscience and Mineral Resources) (2004), Characterization and utilization of geothermal resources in Korea, pp. 17-18 (in Korean).
  12. Kim, J. S., Cha, J. H., Song, S. H. and Jeong, G. C. (2014), Numerical simulations for optimal utilization of geothermal energy under groundwater-bearing conditions, The Journal of Engineering Geology, Vol. 24, No. 4, pp. 487-499 (in Korean). https://doi.org/10.9720/kseg.2014.4.487
  13. Kim, S. O., Suh, M. S. and Kwak, C. H. (2005), Climatological characteristics in the variation of soil temperature in Korea, Journal of Korean Earth Science Society, Vol. 26, No. 1, pp. 93-105 (in Korean).
  14. Koo, M. H., Kim, Y. J., Suh, M. C. and Suh, M. S. (2003), Estimating thermal diffusitivity of soils in Korea using temperature time series data, Journal of the Geological Society of Korea, Vol. 39, No. 3, pp. 301-317 (in Korean).
  15. Koo, M. H., Song, Y. H. and Lee, J. H. (2006), Analyzing spatial and temporal variation of ground surface temperature in Korea, Economic and Environmental Geology, Vol. 39, No. 3, pp. 255-268 (in Korean).
  16. MOCT (Ministry of Construction and Transportation), KWRC (Korea Water Resources Corporation) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2007), The report of groundwater basic investigations of Yesan area, pp. 10-11 (in Korean).
  17. Na, J. Y., Yu, S. H. and Seo, J. W. (2000), Seasonal variations of the heat flux in muddy intertidal sediments near the Jebu island during the ebb tides in the west coast of Korea, Ocean Science Journal, Vol. 5, No. 1, pp. 1-9 (in Korean).
  18. RDA (Rural Development Administration) (2006), Korean soil information system, http://soil.rda.go.kr/webgis/webgis.jsp (in Korean).
  19. Scanlon, B, R., Healy, R. W. and Cook, P. G. (2002), Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeology Journal, Vol. 10, Issue 1, pp. 18-39. https://doi.org/10.1007/s10040-001-0176-2
  20. Soil Moisture Equipment Corp. (1991), Model 2800KI Guelph Permeameter : Operating Instructions, Santa Barbara, CA 93105, USA, p. 28.
  21. Tabbagh, A., Bendjoudi, H. and Benderitter, Y. (1999), Determination of recharge in unsaturated soils using temperature monitoring, Water Resources Research, Vol. 35, No. 8, pp. 2439-2446. https://doi.org/10.1029/1999WR900134
  22. Taniguchi, M. (2010), Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperaturedepth profiles, Water Resources Research, Vol. 29, Issue 7, pp. 2021-2026. https://doi.org/10.1029/93WR00541
  23. Taniguchi, M. and Sharma, M. L. (1993), Determination of groundwater recharge using the change in soil temperature, Journal of Hydrology, Vol. 148, Issues 1-4, pp. 219-229. https://doi.org/10.1016/0022-1694(93)90261-7
  24. Uhm, S. H. and Lee, M. S. (1963), The geological map of Taehung (1:50,000), Geological Survey of Korea (in Korean).

Cited by

  1. Sensitivity Analysis of the Design Factor for Vertical Closed-loop Geothermal System using Numerical Analysis : Focused on Heating Operation vol.18, pp.5, 2018, https://doi.org/10.12813/kieae.2018.18.5.055
  2. Temperature Prediction of Road Anti-Frost Layer vol.19, pp.7, 2019, https://doi.org/10.9798/kosham.2019.19.7.39
  3. Temperature Prediction of Anti-frost Layer using Machine Learning Techniques vol.20, pp.1, 2015, https://doi.org/10.9798/kosham.2020.20.1.9