• Title/Summary/Keyword: uncoupling protein 3 gene

Search Result 31, Processing Time 0.023 seconds

Nrf2 induces Ucp1 expression in adipocytes in response to β3-AR stimulation and enhances oxygen consumption in high-fat diet-fed obese mice

  • Chang, Seo-Hyuk;Jang, Jaeyool;Oh, Seungjun;Yoon, Jung-Hoon;Jo, Dong-Gyu;Yun, Ui Jeong;Park, Kye Won
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.419-424
    • /
    • 2021
  • Cold-induced norepinephrine activates β3-adrenergic receptors (β3-AR) to stimulate the kinase cascade and cAMP-response element-binding protein, leading to the induction of thermogenic gene expression including uncoupling protein 1 (Ucp1). Here, we showed that stimulation of the β3-AR by its agonists isoproterenol and CL316,243 in adipocytes increased the expression of Ucp1 and Heme Oxygenase 1 (Hmox1), the principal Nrf2 target gene, suggesting the functional interaction of Nrf2 with β3-AR signaling. The activation of Nrf2 by tert-butylhydroquinone and reactive oxygen species (ROS) production by glucose oxidase induced both Ucp1 and Hmox1 expression. The increased expression of Ucp1 and Hmox1 was significantly reduced in the presence of a Nrf2 chemical inhibitor or in Nrf2-deleted (knockout) adipocytes. Furthermore, Nrf2 directly activated the Ucp1 promoter, and this required DNA regions located at -3.7 and -2.0 kb of the transcription start site. The CL316,243-induced Ucp1 expression in adipocytes and oxygen consumption in obese mice were partly compromised in the absence of Nrf2 expression. These data provide additional insight into the role of Nrf2 in β3-AR-mediated Ucp1 expression and energy expenditure, further highlighting the utility of Nrf2-mediated thermogenic stimulation as a therapeutic approach to diet-induced obesity.

The Effect of A-3826G Polymorphism of Uncoupling Protein-Ion Visceral Fat Area in Overweight Korean Women

  • Kim, Kil-Soo;Cha, Min-Ho;Kim, Jong-Yeol;Shin, Seung-Uoo;Yoon, Yoo-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.3
    • /
    • pp.279-284
    • /
    • 2005
  • Uncoupling protein-1 (UCP-1) plays a major role in thermogenesis, and has been implicated in the pathogenesis of obesity and metabolic disorders. The aim of this study was to estimate the effects of A-3826G polymorphism of UCP-1 gene on body fat distribution. Two hundred forty eight Korean female overweight subjects with BMI more than 25 kgfm2 participated in this study. The areas of abdominal subcutaneous and visceral fat of all subjects were measured from computed tomography cross sectional pictures of the umbilical region. Subcutaneous fat areas of upper and lower thigh were also measured. Body composition was measured by bio-impedance analysis, and serum concentrations of biochemical parameters, such as glucose, triglyceride, cholesterol etc, were also measured. Genotype of UCP-1 was analyzed by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) method. The frequencies of UCP-1 genotypes were AA type; $27.8\%,\;AG\;type;\;51.2\%\;and\;GG\;type;\;21.0\%,$ and the frequency of G allele was 0.47. Body weight, BMI, WHR, SBP, DBP and body compositions were not significantly different by UCP-1 genotype. Abdominal visceral fat area was significantly higher in AG and GG type compared with AA type (p=0.009), but subcutaneous fat areas were not significantly different by UCP-1 genotype. Among biochemical parameters, LDL cholesterol level was significantly higher in GG type compared with AA and AG types (p=0.033). Among all subjects, 121 subjects finished 1 month weight loss program containing hypocaloric diet and exercise. The reduction of body weight and BMI were lower in GG type compared with AA/AG type even though statistical significances were not found (p > 0.05). These results suggest that UCP-1 genotype has a significant effect on visceral fat accumulation among Korean female overweight subjects with BMI more than $25\;kg/m^2$.

Effects of Wax Gourd Extracts on Adipocyte Differentiation and Uncoupling Protein Genes(Ucps) Expression in 3T3-Ll Preadipocytes

  • Kang, Keun-Jee;Kwon, So-Young
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.148-154
    • /
    • 2003
  • Although various raw plant materials have been demonstrated to exert anti-obesity effects to a greater or lesser extent in both humans and animals when they are used to supplement the diet, it has not been shown extensively that they influence adipocyte cell differentiation involving lipid metabolic gene expressions. Using a well-established 3T3-L1 preadipocyte differentiation system, we decided to look into molecular and cellular event occurring during adipocyte differentiation when raw plant materials aye included in the process, in an effort to demonstrate the potential use of a screening system to define the functions of traditionally well-known materials. To these ends, the effects of ethanol (EtOH) or EtOH/distilled water (DW) extracts of Wax Gourd were examined using cytochemical and molecular analyses to determine whether components of the extracts modulate adipocyte differentiation of 3T3-Ll preadipocytes in vitro. The cytochemical results demonstrated that EtOH or EtOH/DW extracts did not affect lipid accumulation and cell proliferation, although the degree of lipid accumulation was influenced slightly depending on the extract. EtOH extract was highly effective in apoptotic induction during differentiation of 3T3-Ll preadipocytes (p<0.05). Reverse transcription-polymerase chain reaction (RT-PCR) analysis of lipoprotein lipase (LPL), Uncoupling protein (Ucp) 2, 3 and 4 also showed that while LPL expression was not influenced, Ucp2, 3 and 4 were up regulated in the EtOH extract-treated group and down regulated in the EtOH/DW extract-treated group. These changes in gene expressions suggest that the components in different fractions of Wax Gourd extracts may modulate lipid metabolism by either direct or indirect action. Taking these results together, it was concluded that molecular and cellular analyses of adipocyte differentiation involving lipid metabolic genes should facilitate understanding of cellular events occurring during adipocyte differentiation. Furthermore, the experimental scheme and analytical methods used in this study should provide a screening system for the functional study of raw plant materials in obesity research.

A synonymous mutation of uncoupling protein 2 (UCP2) gene is associated with growth performance, carcass characteristics and meat quality in rabbits

  • Liu, Wen-Chao;Lai, Song-Jia
    • Journal of Animal Science and Technology
    • /
    • v.58 no.1
    • /
    • pp.3.1-3.6
    • /
    • 2016
  • Background: Uncoupling proteins 2 (UCP2) plays an important role in energy regulation, previous studies suggested that UCP2 is an excellent candidate gene for human obesity and growth-related traits in cattle and chicks. The current study was designed to detect the genetic variation of UCP2 gene, and to explore the association between polymorphism of UCP2 gene and growth, carcass and meat quality traits in rabbits. Results: A synonymous mutation in exon 1 and four variants in the first intron of the UCP2 gene were identified by using PCR-sequencing. The synonymous mutation c.72G>A was subsequently genotyped by MassArray system (Sequenom iPLEXassay) in 248 samples from three meat rabbit breeds (94 Ira rabbits, 83 Champagne rabbits, and 71 Tianfu black rabbits). Association analysis suggested that the individuals with AA and AG genotypes showed greater 70 d body weight (P < 0.05), 84 d body weight (P < 0.01), ADG from 28 to 84 days of age (P < 0.05), eviscerated weight (P < 0.01), semi-eviscerated weight (P < 0.01) and semi-eviscerated slaughter percentage (P < 0.05), respectively. Additionally, the individuals with AA and AG genotype had a lower pH value of longissimus muscle (P < 0.01) and hind leg muscle (P < 0.05) after slaughter 24 h. Conclusions: These findings indicated that UCP2 could be a candidate gene that associated with growth performance, body composition and meat quality in rabbits, and this would contribute to advancements in meat rabbit breeding practice.

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Da-Eun Min;Sung-Kwon Lee;Hae Jin Lee;Bong-Keun Choi;Dong-Ryung Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.186-196
    • /
    • 2023
  • Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.

Genetic Variations of Eight Candidate Genes in Korean Obese Group

  • Kang, Byung-Youn;Lee, Kang-Oh;Bae, Joon-Seol;Kim, Ki-Tae;Yoon, Moon-Young;Lim, Seok-Rhin;Seo, Sang-Beom;Shin, Jung-Hee;Lee, Chung-Choo
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.1
    • /
    • pp.39-46
    • /
    • 2002
  • Obesity is a complex metabolic disorder with a strong genetic component. There are many candidate genes for obesity and its related phenotypes. We studied genetic variations between Korean obese and lean groups. Polymorphisms investigated were the Msp I polymorphism of the $\alpha$$_{2A}$-adrenergic receptor ($\alpha$$_{2A}$-AR) gene, the Mnl I polymorphism of the $\alpha$$_2$-adrenergic receptor ($\alpha$$_2$-AR) gene, the BstO I polymorphism of the $\beta$$_3$-adrenergic receptor ($\beta$$_3$-AR) gene, the Pml I polymorphism of the lamin A/C (LMNA) gene, the Hga I polymorphism of the clearance receptor (NPRC) gene, the Msp I polymorphism of the leptin gene, BclI polymorphism of the uncoupling protein 1 (UCPI) gene and the Hha I polymorphism of the fatty acid binding protein 2 (FABP2) gene. Among these genetic markers, Pml I polymorphism at the LMNA gene and Bcl I polymorphism at the UCP1 gene were significantly associated with obesity. However, further studies are required whether thease findings are reproduced in large population, although two polymorphisms might be useful as genetic markers in the ethiology of obesity in Korean population.ion.

  • PDF

Impact of GNB3, ADRB3, UCP2, and PPAR${\gamma}$-Pro12Ala polymorphisms on Boiogito response in obese subjects : A randomized, double-blind, placebo-controlled trial (방기황기탕의 유전자 다형성에 따른 비만 치료 효과 : 무작위 배정, 이중 맹검, 위약-대조군 임상시험)

  • Park, Jung-Hyun;Bose, Shambhunath;Lim, Chi-Yeon;Kim, Ho-Jun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.12 no.2
    • /
    • pp.28-43
    • /
    • 2012
  • Objectives: The aim of the study was to investigate the efficacy of Boiogito for obesity. We examined the efficacy of Boiogito for obese patients and we expected the reaction of Boiogito would vary according to the single nucleotide polymorphism(SNPs). Methods: 111 subjects(body mass index${\geq}25m/kg^2$) were recruited and randomized to receive Boiogito(n=55) or Placebo(n=56) for 8weeks. Anthropometric factors, serum lipid profile, glucose, blood pressure(BP), pulse rate, resting metabolic rate and Korean version of obesity-related quality of life(KOQOL) scale measured at baseline and 8weeks. SNPs(${\beta}3$-adrenergic receptor(ADRB3), G protein ${\beta}3$(GNB3), peroxisome proliferator activated receptor gamma 2 gene(PPAR-${\gamma}2$), uncoupling protein(UCP2)) were conducted at baseline. Adverse reactions and safety outcome variables were also checked during trials. Results: Both groups showed significant improvement on obesity after treatment. Boiogito group decreased triglyceride than did control group and improved KOQOL. Boiogito showed a significant higher efficacy in C/T and T/T genotype of GNB3 gene / in Trp64 and Arg64 genotype of ADRB3 gene / in D/D genotype of UCP2 gene / in Pro/Pro genotype of PPAR-${\gamma}$ gene. Conclusions: Boiogito promoted obesity indexes without severe adverse reactions and proved its safety. Pharmacogenetical studies of Boiogito on obesity could be a effective method for the individualized treatment and prevention of obesity.

Reduction of Body Weight by Capsaicin is Associated with Inhibition of Glycerol-3-Phosphate Dehydrogenase Activity and Stimulation of Uncoupling Protein 2 mRNA Expression in Diet-induced Obese Rats

  • Ann, Ji-Young;Lee, Mak-Soon;Joo, Hyun-Jin;Kim, Chong-Tai;Kim, Yang-Ha
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2011
  • Capsaicin is a pungent component of red pepper, which is widely consumed as food adjuncts. The present study was performed to investigate anti-obesity effects of capsaicin in diet-induced obese rats. Male Sprague-Dawley rats (n=14) were fed with a high-fat diet (Control) or high-fat diet containing 0.016% capsaicin (w/w) (Capsaicin) for 8 weeks. The final body weight and the mass of white adipose tissue were significantly lower in capsaicin supplemented group compared to control. Dietary capsaicin ameliorated lipid profiles with decrease in the plasma concentrations of triglycerides and total cholesterol, and decrease in the levels of total lipids and triglycerides in the liver. Activity of glycerol-3-phosphate dehydrogenase (GPDH), an indicator of triglyceride biosynthesis in white adipose tissue, decreased by 35% in the group supplemented with capsaicin. However, consumption of capsaicin increased the expression of uncoupling protein 2 (UCP2) in white adipose tissue, which is related to energy consumption. Our data suggests that capsaicin may reduce body weight and fat accumulation in high fat diet-induced obese rats. These effects may be mediated, at least partially, by the upregulation of UCP2 gene expression and its ability to inhibit GPDH activity.

Effects of Garlic on Uncoupling Protein 2 (UCP2) Transcriptional Regulation in Metabolic Tissues of UCP2 Transgenic Mice Fed on a High-Fat Diet (마늘이 고지방 식이를 섭취한 UCP2 형질전환 마우스의 대사성 조직에서 UCP2 전사 조절에 미치는 영향)

  • Lee, Mak-Soon;Lee, Seohyun;Shin, Yoonjin;Jung, Sunyoon;Park, Seonyoung;Kim, Yangha
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.3
    • /
    • pp.531-538
    • /
    • 2017
  • This study was performed to investigate the effects of garlic on uncoupling protein 2 (UCP2) transcriptional regulation of UCP2-luciferase transgenic mice fed on a high fat diet to induce obesity. To examine the transcriptional regulation of UCP2, we generated transgenic mice with a UCP2 promoter (-1,830/+30 bp) containing luciferase as a reporter gene. UCP2-luciferase transgenic mice were fed a 45% high-fat diet for 8 weeks to induce obesity. Subsequently, mice were maintained on either a high-fat control diet (TG-CON), or high-fat diets supplemented with 2% (TG-GL2) or 5% (TG-GL5) garlic for a further 8 weeks. Dietary garlic reduced body weight and energy efficiency ratio in the TG-GL5 group, compared to the TG-CON group. Furthermore, garlic supplementation significantly decreased white adipose tissue fat mass and plasma levels of triglycerides, total cholesterol, and leptin in the TG-GL2 and TG-GL5 groups, compared to the TG-CON group. Specifically, UCP2 promoter activity in metabolic tissues such as liver, white adipose tissue, brown adipose tissue, and skeletal muscle was increased by garlic supplementation. These results suggest that dietary garlic was partially associated with an increase of UCP2 transcriptional activity in metabolic tissues for decreasing obesity.

Uncoupling Protein 3 in the Rainbow Trout, Oncorhynchus mykiss Sequence, Splicing Variants, and Association with the AvaIII SINE element

  • Kim, Soon-Hag;Choi, Cheol-Young;Hwang, Joo-Yeon;Kim, Young-Youl;Park, Chan;Oh, Berm-Seok;Kimm, Ku-Chan;Scott A. Gahr;Sohn, Young-Chang
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • A rainbow trout uncoupling protein 3 (UCP3) cDNA clone, encoding a 310 amino acid protein, was cloned and sequenced from a liver cDNA library. Two different splice variants designated UCP3-vl and UCP3-v2, were identified through liver cDNA library screening using rainbow trout UCP3 cDNA clone as a probe. UCP3-vl has 3 insertions in the UCP3 cDNA: the first insertion (133 bp), the second (141 bp), and the third (370 bp) were located 126 bp, 334 bp and 532 bp downstream from the start codon, respectively. UCP3-v2 contained a single insertion, identical in sequence and location to the second insertion of UCP3-vl. UCP3, a mitochondrial protein, functions to modulate the efficiency of oxidative phosphorylation. UCP3 has been detected from heart, testis, spinal cord, eye, retina, colon, muscle, brown adipose tissue and white adipose tissue in mammalian animals. Human and rodent UCP3s are highly expressed in skeletal muscle and brown adipose tissue, while they show weak expression of UCP3 in heart and white adipose tissue. In contrast to mammalian studies, RT-PCR and Southern blot analysis of the rainbow trout demonstrated that UCP3 is strongly expressed in liver and heart. UCP3, UCP3-vl, and UCP3-v2 all contain an Ava III short interspersed element (SINE), located in the 3'untraslated region (UTR). PCR using primers from the Ava III SINE and the UCP3 3'UTR region indicates that the UCP3 cDNA is structurally conserved among salmonids and that these primers may be useful for salmonid species genotyping.