DOI QR코드

DOI QR Code

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Received : 2023.04.12
  • Accepted : 2023.04.24
  • Published : 2023.12.31

Abstract

Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.

Keywords

References

  1. Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7(5): e330-e341. doi: 10.1016/j.orcp.2013.05.004
  2. Kopelman PG (2000) Obesity as a medical problem. Nature 404(6778): 635-643. doi: 10.1038/35007508
  3. Jung UJ, Choi MS (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15(4): 6184-6223. doi: 10.3390/ijms15046184
  4. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H (2008) Dynamics of fat cell turnover in humans. Nature 453(7196): 783-787. doi: 10.1038/nature06902
  5. Zorena K, Jachimowicz-Duda O, Slezak D, Robakowska M, Mrugacz M (2020) Adipokines and obesity. potential link to metabolic disorders and chronic complications. Int J Mol Sci 21(10): 3570. doi: 10.3390/ijms21103570
  6. Kwon H, Pessin JE (2013) Adipokines mediate inflammation and insulin resistance. Front Endocrinol 4: 71. doi: 10.3389/fendo.2013.00071
  7. Park A, Kim WK, Bae KH (2014) Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells 6(1): 33. doi: 10.4252/wjsc.v6.i1.33
  8. Berry DC, Stenesen D, Zeve D, Graff JM (2013) The developmental origins of adipose tissue. Development 140(19): 3939-3949. doi: 10.1242/dev.080549
  9. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB (2016) Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol 7: 30. doi: 10.3389/fendo.2016.00030
  10. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84: 277-359. 10.1152/physrev.00015.2003
  11. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19: 1252-1263. doi: 10.1038/nm.3361
  12. Garcia RA, Roemmich JN, Claycombe KJ (2016) Evaluation of markers of beige adipocytes in white adipose tissue of the mouse. Nutr Metab 13(1): 1-14. doi: 10.1186/s12986-016-0081-2
  13. Liu L, Zhang T, Hu J, Ma R, He B, Wang M, Wang Y (2020) Adiponectin/SIRT1 axis induces white adipose browning after vertical sleeve gastrectomy of obese rats with type 2 diabetes. Obes Surg 30(4):1392-1403. doi: 10.1007/s11695-019-04295-4
  14. Rachid TL, Penna-de-Carvalho A, Bringhenti I, Aguila MB, Mandarimde-Lacerda CA, Souza-Mello V (2015) Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Mol Cell Endocrinol 402: 86-94. doi: 10.1016/j.mce.2014.12.027
  15. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2): 366-376. doi: 10.1016/j.cell.2012.05.016
  16. Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10:24-36. doi: 10.1038/nrendo.2013.204
  17. Bouba AA, Njintang YN, Scher J, Mbofung CMF (2010) Phenolic compounds and radical scavenging potential of twenty Cameroonian spices. ABJNA 1(3): 213-224
  18. Fotie J, Nkengfack AE, Peter MG, Heydenreich M, Fomum ZT (2004) Chemical constituents of the ethyl acetate extracts of the stem bark and fruits of Dichrostachys cinerea and the roots of Parkia bicolor. Bull Chem Soc Ethiop 18: 111-115. doi: 10.4314/bcse.v18i1.61646
  19. Azantsa B, Kuate D, Chakokam R, Paka G, Bartholomew B, Nash R (2015) The effect of extracts of Irvingia gabonensis (IGOB131) Dichrostachys glomerata (DyglomeraTM) on body weight and lipid parameters of healthy overweight participants. Funct Foods Health Dis 5: 200-208. doi: 10.31989/ffhd.v5i6.184
  20. Kuate D, Etoundi BC, Ngondi JL, Manan WA, Muda BW, Oben JE (2013) Anti-inflammatory, anthropometric and lipomodulatory effects Dyglomera® (hydroethanolic extract of Dichrostachys glomerata) in obese patients with metabolic syndrome. Funct Foods Health Dis 3: 416-427
  21. Kim HL, Lee SK, Min DE, Choi BK, Lee DR (2022) Anti-obesity effect of Dyglomera® is associated with activation of the AMPK signaling pathway in 3T3-L1 adipocytes and mice with high-fat diet-induced obesity. Molecules 27(10): 3288. doi: 10.3390/molecules27103288
  22. Klop B, Elte JW, Cabezas MC (2013) Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5: 1218-1240. doi: 10.3390/nu5041218
  23. Fernandez-Veledo S, Vazquez-Carballo A, Vila-Bedmar R, Ceperuelo-Mallafre V, Vendrell J (2013) Role of energy-and nutrient-sensing kinases AMP-activated Protein Kinase (AMPK) and Mammalian Target of Rapamycin (mTOR) in Adipocyte Differentiation. IUBMB Life 65(7): 572-583. doi: 10.1002/iub.1170
  24. Martinez-Sanchez N (2020) There and back again: leptin actions in white adipose tissue. Int J Mol Sci 21(17): 6039. doi: 10.3390/ ijms21176039
  25. Lee HY, Suh KS, Kim YI, Jang BK, Kim BH, Yim SV (2021) Bioactive fraction of Aronia melanocarpa fruit inhibits adipogenic differentiation of cultured 3T3-L1 cells. Appl Sci 11: 9224. doi: 10.3390/app11199224
  26. Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320(3): C375-C391.
  27. Palhinha L, Liechocki S, Hottz ED, Pereira JA, de Almeida CJ, MoraesVieira PM, Bozza PT, Maya-Monteiro CM (2019) Leptin induces proadipogenic and proinflammatory signaling in adipocytes. Front Endocrinol 10: 841. doi: 10.3389/fendo.2019.00841
  28. Procaccini C, Jirillo E, Matarese G (2012) Leptin as an immunomodulator. Mol Asp Med 33: 35-45. doi: 10.1016/j.mam.2011.10.012
  29. Von Bank H, Hurtado-Thiele M, Oshimura N, Simcox J (2021) Mitochondrial lipid signaling and adaptive thermogenesis. Metabolites 11(2): 124. doi: 10.3390/metabo11020124
  30. Sudhakar M, Sasikumar SJ, Silambanan S, Natarajan D, Ramakrishnan R, Nair AJ, Kiran MS (2020) Chlorogenic acid promotes development of brown adipocyte-like phenotype in 3T3-L1 adipocytes. J Funct Foods 74: 104161. doi: 10.1016/j.jff.2020.104161
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4): 402-408. doi: 10.1006/meth.2001.1262
  32. O'Neill HM, Holloway GP, Steinberg GR (2013) AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 366: 135-151. doi: 10.1016/j.mce.2012.06.019
  33. Halberg N, Wernstedt-Asterholm I, Scherer PE (2008) The adipocyte as an endocrine cell. Endocrinol Metab Clin N Am 37: 753-768. doi: 10.1016/j.ecl.2008.07.002
  34. Kim SY, Jang YJ, Park BK, Yim JH, Lee HK, Rhee DK, Pyo SK (2016) Ramalin inhibits differentiation of 3T3-L1 preadipocytes and suppress adiposity and body weight in a high-fat diet-fed C57BL/6J mice. Chem Biol Interact 257: 71-80. doi: 10.1016/j.cbi.2016.07.034
  35. Choi BH, Kim YH, Ahn YH, Ha JH, Byun JM, Do MS (2009) The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling. Nutr Res Pract 3(2): 84-88. doi: 10.4162/nrp.2009.3.2.84
  36. Hwang JH, Yoo JA, Yoon HK, Han TK, Yoon JC, An SJ (2021) The role of leptin in the association between obesity and psoriasis. Biomol Ther 29(1): 11-21. doi: 10.4062/biomolther.2020.054
  37. Braun K, Oeckl J, Westermeier J, Li Y, Klingenspor M (2018) Nonadrenergic control of lipolysis and thermogenesis in adipose tissues. J Exp Biol 221(Pt Suppl 1): jeb165381. doi: 10.1242/jeb.165381
  38. Fan L, Xu H, Yang R, Zang Y, Chen J, Qin H (2019) Combination of capsaicin and capsiate induces browning in 3T3-L1 white adipocytes via activation of the peroxisome proliferator-activated receptor g/b3-adrengergic receptor signaling pathways. J Agric Food Chem 67: 6232-6240. doi: 10.1021/acs.jafc.9b02191
  39. Parray HA, Lone J, Park JP, Choi JW, Yun JW (2018) Magnolol promotes thermogenesis and attenuates oxidative stress in 3T3-L1 adipocytes. Nutrition. 50: 82-90. doi: 10.1016/j.nut.2018.01.017
  40. Palmer BF, Clegg DJ (2017) Non-shivering thermogenesis as a mechanism to facilitate sustainable weight loss. Obes Rev 18: 819-831. doi: 10.1111/obr.12563
  41. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMPactivated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci 104: 12017-12022. doi: 10.1073/pnas.0705070104
  42. Canto C, Gerhart-Hines Z, Feige, JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056-1060. doi: 10.1038/nature07813
  43. Hondares E, Rosell M, Diaz-Delfin J, Olmos Y, Monsalve M, Iglesias R, Villarroya F, Giralt M (2011) Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 286(50): 43112-43122. doi: 10.1074/jbc.M111.252775