• Title/Summary/Keyword: uncertain data

Search Result 525, Processing Time 0.027 seconds

Problems of Big Data Analysis Education and Their Solutions (빅데이터 분석 교육의 문제점과 개선 방안 -학생 과제 보고서를 중심으로)

  • Choi, Do-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.265-274
    • /
    • 2017
  • This paper examines the problems of big data analysis education and suggests ways to solve them. Big data is a trend that the characteristic of big data is evolving from V3 to V5. For this reason, big data analysis education must take V5 into account. Because increased uncertainty can increase the risk of data analysis, internal and external structured/semi-structured data as well as disturbance factors should be analyzed to improve the reliability of the data. And when using opinion mining, error that is easy to perceive is variability and veracity. The veracity of the data can be increased when data analysis is performed against uncertain situations created by various variables and options. It is the node analysis of the textom(텍스톰) and NodeXL that students and researchers mainly use in the analysis of the association network. Social network analysis should be able to get meaningful results and predict future by analyzing the current situation based on dark data gained.

Public Key based Secure Data Management Scheme for the Cloud Data Centers in Public Institution (공공기관 클라우드 데이터 센터에 활용 가능한 공개키 기반의 안전한 데이터 관리 기법)

  • Wi, Yukyeong;Kwak, Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.467-477
    • /
    • 2013
  • The cloud computing has propagated rapidly and thus there is growing interest on the introduction of cloud services in the public institution. Accordingly, domestic public institution are adoption of cloud computing impose and devise a plan. In addition, more specifically, is building a cloud computing system in the public institution. However, solutions to various security threats(e.g., availability invasion of storage, access by unauthorized attacker, data downloaded from uncertain identifier, decrease the reliability of cloud data centers and so on) is required. For the introduction and revitalize of cloud services in the public institution. Therefore, in this paper, we propose a public key based secure data management scheme for the cloud data centers in public institution. Thus, the use of cloud computing in the public institutions, the only authorized users have access to the data center. And setting for importance and level of difficulty of public data management enables by systematic, secure, and efficient. Thus, cloud services for public institution to improve the overall security and convenience.

Downscaling of Thematic Maps Based on Remote Sensing Data using Multi-scale Geostatistics (다중 스케일 지구통계학을 이용한 원격탐사 자료 기반 주제도의 다운스케일링)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • It is necessary to develop an integration model which can account for various data acquired at different measurement scales in environmental thematic mapping with high-resolution ground survey data and relatively low-resolution remote sensing data. This paper presents and applies a multi-scale geostatistical methodology for downscaling of thematic maps generated from lowresolution remote sensing data. This methodology extends a traditional ordinary kriging system to a block kriging system which can account for both ground data and remote sensing data which can be regarded as point and block data, respectively. In addition, stochastic simulation based on block kriging is also applied to describe spatial uncertainty attached to the downscaling. Two downscaling experiments including SRTM DEM and MODIS Leaf Area Index (LAI) products were carried out to illustrate the applicability of the geostatistical methodology. Through the experiments, multi-scale geostatistics based on block kriging successfully generated relatively high-resolution thematic maps with reliable accuracy. Especially, it is expected that multiple realizations generated from simulation would be effectively used as input data for investigating the effects of uncertain input data on GIS model outputs.

Trading rule extraction in stock market using the rough set approach

  • Kim, Kyoung-jae;Huh, Jin-nyoung;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.337-346
    • /
    • 1999
  • In this paper, we propose the rough set approach to extract trading rules able to discriminate between bullish and bearish markets in stock market. The rough set approach is very valuable to extract trading rules. First, it does not make any assumption about the distribution of the data. Second, it not only handles noise well, but also eliminates irrelevant factors. In addition, the rough set approach appropriate for detecting stock market timing because this approach does not generate the signal for trade when the pattern of market is uncertain. The experimental results are encouraging and prove the usefulness of the rough set approach for stock market analysis with respect to profitability.

  • PDF

Modern Probabilistic Machine Learning and Control Methods for Portfolio Optimization

  • Park, Jooyoung;Lim, Jungdong;Lee, Wonbu;Ji, Seunghyun;Sung, Keehoon;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.73-83
    • /
    • 2014
  • Many recent theoretical developments in the field of machine learning and control have rapidly expanded its relevance to a wide variety of applications. In particular, a variety of portfolio optimization problems have recently been considered as a promising application domain for machine learning and control methods. In highly uncertain and stochastic environments, portfolio optimization can be formulated as optimal decision-making problems, and for these types of problems, approaches based on probabilistic machine learning and control methods are particularly pertinent. In this paper, we consider probabilistic machine learning and control based solutions to a couple of portfolio optimization problems. Simulation results show that these solutions work well when applied to real financial market data.

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

A stiffness control of a manipulator using a fuzzy model (퍼지몰텔을 이용한 매니퓰레이터의 강성 제어)

  • 김문주;이희진;조영완;김현태;박민용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.1-10
    • /
    • 1996
  • In this paper, we suggest a new identification method based on the takagi-sugeno fuzzy model which prepresents an envrionmental stiffness and propose a method to decide PD gains of the PD controller. It is difficult to perform a compliance task due to characteristics of robot itself and uncertain work envronment. Therefore, in this paper, we identify the fuzzy rule by dividing the relationship of input-output data into several piecewise-linear equations using the hough transform which is the one this fuzzy model, we propose a method to design the pD gain. We show the validity of this method by the experiment of tracking the surface of the paper box as an example of variable environment using robot manipulator and force sensing system. As a performance index, we use the settling time, and perform an analysis between conventional PD contorllers and this controller.

  • PDF

A Study on Fuzzy Controller for Autonomous Mobile Robot (자율 이동 로보트의 퍼지 제어기에 관한 연구)

  • 주영훈;황희수;고재원;김성권;황금찬;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1071-1084
    • /
    • 1992
  • In this paper, the method for navigation and obstacle avoidance of the autonomous mobile robot is proposed. The proposed algorithms are based on the fuzzy inference system which is able to deal with imprecise and uncertain information. The self-tuning algorithm, which adopts the simplex method, modifies the parameters of membership functions of the input-output linguistic variables by changing the support of these fuzzy sets according to the integral of absolute error(IAE) of the system response. The wall-follwing navigation and obstacle avoidance of the mobile robot are based on range data measured from the internal sensors(encoder) and the outer sensors(sonar sensor). In addition, the algorithm for the obstacle detection proposed in this paper is based on the expert's experience. Finally, the effectiveness of navigation and obstacle avoidance algorithm is demonstrated through simulation and experiment.

  • PDF

Stabilized Control of Inverted Pendulum System by ANFIS

  • Lee, Joon-Tark;Lee, Oh-Keol;Shim, Young-Zin;Chung, Hyeng-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.691-695
    • /
    • 1998
  • Most of systems has nonlinearity . And also accurate modelings of these uncertain nonlinear systems are very difficult. In this paper, a fuzzy modeling technique for the stabilization control of an IP(inverted pendulum) system with nonlinearity was proposed. The fuzzy modeling was acquired on the basis of ANFIS(Adaptive Neuro Fuzzy Infernce System) which could learn using a series of input-output data pairs. Simulation results showed its superiority to the PID controller. We believe that its applicability can be extended to the other nonlinear systems.

  • PDF

Approximate Dynamic Programming-Based Dynamic Portfolio Optimization for Constrained Index Tracking

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.