Abstract
It is necessary to develop an integration model which can account for various data acquired at different measurement scales in environmental thematic mapping with high-resolution ground survey data and relatively low-resolution remote sensing data. This paper presents and applies a multi-scale geostatistical methodology for downscaling of thematic maps generated from lowresolution remote sensing data. This methodology extends a traditional ordinary kriging system to a block kriging system which can account for both ground data and remote sensing data which can be regarded as point and block data, respectively. In addition, stochastic simulation based on block kriging is also applied to describe spatial uncertainty attached to the downscaling. Two downscaling experiments including SRTM DEM and MODIS Leaf Area Index (LAI) products were carried out to illustrate the applicability of the geostatistical methodology. Through the experiments, multi-scale geostatistics based on block kriging successfully generated relatively high-resolution thematic maps with reliable accuracy. Especially, it is expected that multiple realizations generated from simulation would be effectively used as input data for investigating the effects of uncertain input data on GIS model outputs.
높은 공간 해상도의 지상 자료와 상대적으로 저해상도인 원격탐사 자료의 통합을 통한 지표 환경 주제도 작성에서는 이러한 해상도의 차이를 반영한 통합 방법론이 필요하다. 이 연구에서는 상대적으로 저해상도인 원격탐사 자료와 지상 자료로부터 고해상도 주제도 작성과 관련된 다운스케일링을 위한 다중 스케일 지구통계학적 방법론을 적용하였다. 기존 정규 크리깅 시스템을 확장하여 포인트 자료로 간주할 수 있는 지상 자료와 블럭 자료로 간주할 수 있는 원격탐사 자료를 크리깅 시스템에 직접 포함하는 블럭 크리깅 방법론을 이용하였다. 부가적으로 다운스케일링에 따른 불확실성을 묘사하기 위해 블럭 크리깅 기반 시뮬레이션 기법도 함께 이용하였다. SRTM DEM과 MODIS 엽면적 지수 자료의 다운 스케일링 실험 연구를 통해 적용 기법의 적용성을 평가하였다. 두가지 실험 연구 결과, 적용 기법을 통해 효과적으로 상대적으로 고해상도 주제도 생성이 가능함을 확인하였으며, 특히 다중 시뮬레이션 결과는 다운 스케일링된 자료를 입력 자료로 사용하는 GIS 모델에 사용하여 모델 결과의 불확실성 분석에 효율적으로 이용될 수 있을 것으로 기대된다.