• Title/Summary/Keyword: ultrasonic stress wave test

Search Result 29, Processing Time 0.021 seconds

Patterns of Resistographs for Evaluating Deteriorated Structural Wood Members

  • LEE, Jun Jae;KIM, Kwang Chul;BAE, Mun Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.45-54
    • /
    • 2003
  • The density and strength of wood is affected by degradations and defects, such as voids and knots. Old wooden structures such as traditional cultural properties have been deteriorated by these types of defects. They were evaluated by a visual observation that is difficult to evaluate the inner deterioration in structures. In this study, three nondestructive testing techniques were investigated to detect the wooden structural members. Ultrasonic stress wave tests, drilling resistance tests and visual inspections were used to examine the structural wood members. Patterns of Resistograph using by drilling resistance tests could indicate the features of internal wood such as voids, knots, decay, fungi, and so on. The technique just like as ultrasonic stress wave tests, however, difficult to detect exactly area where small amounts of internal deterioration in logs are. In spite of results of ultrasonic stress wave test, the internal deterioration of wooden structural members could be evaluated by the relationship between ultrasonic stress wave tests and drilling resistance tests.

Determination of Ratio of Wood Deterioration Using NDT Technique

  • Lee, Jun-Jae;Bae, Mun-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2004
  • In ancient wooden structures, the mechanical properties of the structural members have been reduced by time-dependent degradations such as fatigue or creep. Also, the external and internal deterioration was caused by environmental condition, fungi, bacteria, or insect, and then reduced the quality of structural members. However, the previous methods for evaluating the deterioration have been mainly depended on the visual inspection. In this study, therefore, ultrasonic stress wave test, accelerometer stress wave test were used to evaluate the deterioration of structural wood members in ancient wooden structures. Based on the results, the quantitative criteria of stress wave transmitted velocity were proposed to evaluate the deterioration of structural member. The proposed criteria were related to the degree of deterioration. In accelerometer stress wave, the criteria of deterioration of wave reciprocal velocity was below 1800 ㎲/m at incipient deterioration (below 12% ratio of deterioration), between 1800 and 2200 ㎲/m at moderate deterioration (12~17%) and above 2200 ㎲/m at severe deterioration (above 17%). The ultrasonic stress wave, the criteria of deterioration were 800 and 950 ㎲/m at below 8% and above 15% of the degree of deterioration respectively.

Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test (펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가)

  • Oh, Seung-Kyu;Hwang, Young-Taek;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

A Basic Research on Estimation of Material Condition by Using Nonlinear Elastic Modulus (비선형 탄성계수를 이용한 재료변질 상태평가에대한 기초적 연구)

  • 김경조;장경영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.348-352
    • /
    • 1995
  • In the conventional linear elasticity, ultrasonic velocity is determined by elastic modulus and density of te medium which ultrasonic wave propagates through. But, practical ultrsonic wave depends on the stress acting in the medium, and as the stress increases such dependency becomes nonlinear. This nonlinear dependencyof ultrasonic velocity on stress can be identified by using nonlinear elastic modulus up to 4th order. In thid paper, with the above background relationships between nonlinear elastic modulus and the internalstatus of materials, normal, plastic deformed or heat stressed, are discussed. For this purpose, a new type of measuring system extended from the general nondestructive UT(ultrasonic test) equipment is constructed.

  • PDF

A Basic Research on Estimation of Material Condition by Using Stress Dependency of Sound Speed (음속의 응력의존성을 이용한 재료 상태평가에 대한 기초적 연구)

  • Kim, K.J.;Jhang, K.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.53-60
    • /
    • 1996
  • In the conventional linear elasticity, sound speed is determined by only elastic modulus and density of the medium. In actual, however, sound speed depends on the stress and this dependency becomes nonlinear as the stress increases. These phenomena can be introducing nonlinear elastic modulus. In this paper, relationships between nonlinear elastic modulus up to 4th order and the internal status of materials are discussed through computer simulations and experiments. For the measurement of sound speed, a new type of measurement system using ultrasonic wave is proposed on the basis of ultrasonic pulse echo method which has been generally used in nondestructive ultrasonic test equipment. In order to confirm the stress dependency of sound speed, several experiments are carried out for alumina specimen.

  • PDF

The new approach to calculate pulse wave returning energy vs. mechanical energy of rock specimen in triaxial test

  • Heidari, Mojtaba;Ajalloeian, Rassoul;Fard, Akbar Ghazi;Isfahanian, Mahmoud Hashemi
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • In this paper, we discuss a mathematical method for determining the return energy of the wave from the sample and comparing it with the mechanical energy consumed to change the dimension of the sample in the triaxial test of the rock. We represent a method to determine the mechanical energy and then we provide how to calculate the return energy of the wave. However, the static energy and pulse return energy will show higher amounts with axial pressure increase. Three types of clastic sedimentary rocks including sandstone, pyroclastic rock, and argillitic tuff were selected. The sandstone showed the highest strength, Young's modulus and ultrasonic P and S waves' velocities versus others in the triaxial test. Also, from the received P wavelet, the calculated pulse wave returning energy indicated the best correlation between axial stress compared to wave velocities in all specimens. The fact that the return energy decreases or increases is related to increasing lateral stress and depends on the geological characteristics of the rock. This method can be used to determine the stresses on the rock as well as its in-situ modulus in projects that are located at high depths of the earth.

Ultrasonic evaluation of small surface fatigue cracks initiating in residual stress zone (잔류응력 영역에서 발생한 작은 피로균열의 초음파 평가)

  • Kang Kae-Myung;Kim Jin-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.55-62
    • /
    • 2000
  • A surface acoustic wave method for the evaluation of small fatigue crack initiated from a pit-type surface flaw is presented. In-situ ultrasonic experiments are performed for aluminum 2024-T3 alloy samples under the fatigue test. During the fatigue test, the surface acoustic wave reflection signal from the pit and crack is measured under different hold-stress levels. From the measured and predicted surface wave reflections the depths of fully and partially open cracks are determined and results are verified by comparing with SEM fractography The crack opening behavior of the fatigue crack is evaluated from the predicted effective crack depths. The method developed in this study can be applied to monitor and characterize crack initiation and propagation from pit-type surface flaws in the early stage of fatigue life.

  • PDF

Modulus and Damping Properties of Kaolinite Using Ultrasonic Testing (초음파를 이용한 카올린 점토의 계수 및 감쇠 특성)

  • 민덕기
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • The objective of the present research is to evaluate the wave propagation velocity and attenuation characteristics of kaolin clay specimens using ultrasonic testing. Test specimens with known initial micro-fabric were prepared using a two-stage slurry consolidation technique. For a known state of stress conditions, initial void ratio, and micro-fabric, a series of experiments were conducted to evaluate the longitudinal wave propagation velocity and associated damping behavior. The effects of major variables involved in ultrasonic testing of cohesive soil were considered in this study. Ultrasonic velocity was not correlated to the microfabric structure under the given consolidated pressure whereas ultrasonic attenuation was affected by the microstructural properties of the specimen.

Investigation on the Effect of Stress Waves on Soil Flushing (토양세척에 있어서 탄성파의 효과에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.37-40
    • /
    • 2000
  • Acoustically enhanced soil flushing method is a newly developed in-situ remediation technique. However, there has not been an analytical method that can be used to evaluate the effectiveness of ultrasonic wave under different conditions. This study was undertaken to investigate the degree of enhancement in contaminant removal due to ultrasonic energy on the soil flushing method. The test conditions included different levels of ultrasonic power and hydraulic gradient. The test soils were Ottawa sand, a fine aggregate, and a natural soil, and the surrogate contaminant was a Crisco Vegetable Oil. The test results showed that sonication could increase contaminant removal significantly. Increasing sonication power increased pollutant removal. The faster the flow is, the smaller the degree of enhancement will be. The pollutants in dense soils are more difficult to be removed than in loose soils.

  • PDF

Mechanical Properties and Ultrasonic Characteristic of SS400 and STS304 by Simulated Heats (열재현에 의한 SS300 및 STS304의 기계적 성질 및 초음파 특성)

  • Jeong, Jeong-Hwan;Ahn, Seok-Hwan;Park, In-Duck;Nam, Ki-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.127-132
    • /
    • 2003
  • In a today industry, the welding is doing a many portion in structure manufacture. This study is simulated heat of heat-effected zone and researched a mechanical properties and ultrasonic characteristic in used the SS400 and the STS304. As the result mechanical properties of steel that become drawing decreased because of remaining stress by strain gardening according as simulated heat temperature rises, but according as temperature rises in material that do simulated heat after have done annealing, mechanical propensity was improved. The velocity and attenuation become different by effect of remaining stress than effect of material internal microstructure in ultrasonic wave test. In the case of STS304, there was change in mechanical properties by effect that is by strain hardening, but there was no change in material that simulated heat after annealing. When become drawing in ultrasonic waves test, according as simulated heat temperatures rise, change of attenuation coefficient is looked, but material that simulated heat after annealing was no change almost both the volocity and attenuation.

  • PDF