• Title/Summary/Keyword: ultra high strength

Search Result 730, Processing Time 0.024 seconds

Study on the mix proprotion and the thermal crack of Ultra High Strength Concrete (초고강도 콘크리트의 배합 및 온도균열에 대한 연구)

  • Moon, Han-Young;Kim, Byoung-Kwon;Son, Young-Hyun;Kang, Hoon;Kim, Jeong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.265-268
    • /
    • 1999
  • In this study, we manufactured the ultra-high strength concrete using mineral admixture which is easily workable. From the test results of compressive strength, It is concluded that the proper replacement ratio of silica fume should not exceed to 10% and the replacement of slag is more effective that the replacement of fly ash to gain very high compressive strength. Thermal stress analysis is conducted to find the way of controlling the thermal crack of ultra-high strength concrete. As results of thermal stress analysis, it was found that reducing placing temperature of concrete(pre-cooling) is effective to reduce thermal crack and placing concrete in high air temperature is more effective than placing concrete in low air temperature.

  • PDF

An Experimental Study on appropriate water-binder ratio for development of ultra high strength concrete (초고강도 콘크리트 개발을 위한 적정 물-결합재비 선정에 관한 실험적 연구)

  • Jang, Jong-Min;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.79-80
    • /
    • 2016
  • In this study, we measured the relative density and the compressive strength in order to select the appropriate W/ B for the ultra-high strength concrete development. If W/B is lowered than the W/B of highest relative density, it was confirmed that the strength is lowered. However, if water is increased than the W/B of highest relative density, the relative density is decreased compressive strength was similar. The selection of the W/B of the lower than the highest relative density is not appropriate. Appropriate W/B is selected to be more than the maximum relative density of W/B.

  • PDF

Engineering Properties of Ultra High Strength Concrete Incorporating Silica Fume Using Superplasticizer Containing CASB (CASB 함유 고성능감수제 사용 초고강도 콘크리트의 실리카흄 치환율 변화에 따른 공학적 특성)

  • Kim, Young-Hee;Son, Ho-Jeong;Yoo, Seung-Yeup;Koo, Ja-Sul;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.55-56
    • /
    • 2011
  • This paper is to compare and analyze the properties of ultra high strength concrete depending on the use of SF aiming for applicability of superplasticizer containing CASB as a functional agent for strength improvement. As experimental results, in case superplasticizer containing CASB is used, regardless of W/B, settiing time was more accelerated than N, and both compressive strength and tensile strength showed an increase in their strength minutely.

  • PDF

An Evaluation of Fire Resistance Performance for Fiber-Mixed Ultra High Strength Concrete on Field application (현장 적용성을 고려한 섬유혼입 초고강도 콘크리트의 내화성능 평가)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Lee, Tae-Gyu;Min, Choong-Siek;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.33-36
    • /
    • 2011
  • Recently, It has increased to use ultra high strength concrete. It is effective to mix organic fibers for preventing spalling. But if fiber mixed, flowability of concrete is decreases. The aim of this study is to evaluation of fire resistance performance for fiber-mixed ultra high strength concrete on field application. As a result, flowability of nylon fiber mixed concrete is better than polyethylene fiber mixed. In non-fiber and polyethylene fiber mixed concrete, spalling occurred. And strain converged at 0.004. Also, residual strength could not evaluate. Nylon fiber mixed concrete is effective to prevent spalling. And it remians 50% residual strength compare with compressive strength at room temperature.

  • PDF

A Study of the Affected Layer and Stress Corrosion Crack of Ultra-high-strength Steel (300M) for Aircraft Parts (항공기용 초고장력강(300M) 부품의 가공변질층과 응력부식균열에 관한 연구)

  • Ahn, Jinwoo;Kim, Taehwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • Mechanical components that support structures in aerospace and power generation industries require high-strength materials. Particularly, in the aerospace industry, aluminum alloys, titanium alloys, and composite materials are increasingly used due to their high maneuverability and durability to withstand low temperature extreme environments; however, ultra-high-strength steel is still used in key components under heavy loads such as landing gears. In this paper, the fault cause analysis and troubleshooting of aircraft parts made of ultra-high-strength steel (300M) broken during normal operation are described. To identify the cause of the defect, a temporary inspection of the same aircraft was performed, and material testing, non-destructive inspection, microstructure examination, and fracture area inspection of the damaged parts were performed. Fracture analysis results showed that a crack in the shape of a branch developed from the tool mark in the direction of the intergranular strain. Based on the results, the cause of fracture was confirmed to be stress corrosion.

Effect of Ni-Flash Coating on Hydrogen Embrittlement and Liquid Metal Embrittlement of Ultra-High-Strength Electrogalvanized Steel Sheet (Ni-Flash 코팅이 초고강도 전기아연 도금강재의 수소취화 및 액상금속취화에 미치는 영향)

  • Seon Ho Oh;Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.302-309
    • /
    • 2024
  • The purpose of this study was to elucidate effects of a thin (tens to hundreds of nanometers) Ni-flash coating layer on hydrogen embrittlement (HE) and liquid metal embrittlement (LME) in ultra-high-strength electrogalvanized steel with a tensile strength of more than 1 GPa. Various experimental and analytical methods, including thermal desorption spectroscopy, slow strain rate testing, resistance spot welding, X-ray diffraction, and metallographic observation, were employed. Results showed that an increase in Ni target amount for flash coating resulted in a decrease in diffusible hydrogen content during electrogalvanizing, resulting in a significant decrease in HE sensitivity. Moreover, a Ni target amount of more than 1000 mg/m2 drastically reduced the occurring frequency and average depth of LME. This reduction could be primarily attributed to formation of Zn-Ni intermetallic phases during the welding process that could inhibit liquefaction of intermetallic phases in the heat-affected zone. This study provides a desirable Ni target amount for Ni-flash coating on ultra-high-strength steels conducted in a continuous galvanizing line or a high-speed batch line to achieve high resistance to both HE and LME.

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.

A Study on the Early Evaluation of Compressive Strength of Ultra-High Strength Concrete Using 50, 60℃ Warm Water Curing (50, 60℃ 온수양생을 이용한 초고강도 콘크리트의 강도 조기 평가)

  • Lee, Jong-Seok;Myung, Ro-Oun;Paik, Min-Soo;Gong, Min-Ho;Ha, Jung-Soo;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.73-75
    • /
    • 2011
  • In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in 50, 60℃ warm water was investigated. W/B of 32, 23.5, 19% 3 levels were examined. And the specimens were cured in 50, 60℃ warm water. The results showed reliable accuracy by regression relation between 28day strength cured by standard curing method and accelerated strength of the concrete cured in warm water. And the specimens cured in 50, 60℃ showed more high strength development. So 60℃ curing could be considered in order to reduce the measurement error. As a result, the feasibility of 50, 60℃ warm water curing method at high strength level was confirmed.

  • PDF

An Experimental Study on the Properties of Ultra High Strength Concrete for Replacement of Silica Fume & Fly Ash (실리카흄 및 플라이애쉬의 치환율 변화에 따른 초고강도 콘크리트의 특성에 관한 실험적 연구)

  • 윤기원;조병영;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.157-160
    • /
    • 1994
  • Recently, many studies on the ultra high strength concrete are performed in our country. so, this study is aimed for analyzing the effects for replacement of silica fume and fly ash. As results, slump, slump flow and compressive strength is showed the high values in replacement silica fume. Tensile strength ratio is 1/17 and bending strength ratio is 1/6 for compressive, there are results of the test.

  • PDF

Analytical evaluation and study on the springback according to the cross sectional form of 1.2GPa ultra high strength steel plate (1.2GPa급 초고강도강판의 단면 형태에 따른 스프링백에 관한 해석적 평가 및 연구)

  • Lee, Dong-Hwan;Han, Seong-Ryeol;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.17-22
    • /
    • 2019
  • Currently, studies on weight reduction and fuel efficiency increase are the most important topics in the automotive industry and many studies are under way. Among them, weight reduction is the best way to raise fuel efficiency and solve environmental pollution and resource depletion. Materials such as aluminum, magnesium and carbon curing materials can be found in lightweight materials. Among these, research on improvement of bonding technology and manufacturing method of materials and improvement of material properties through study of ultrahigh strength steel sheet is expected to be the biggest part of material weight reduction. As the strength of the ultra hight strength steel sheet increases during forming, it is difficult to obtain the dimensional accuracy as the elastic restoring force increases compared to the hardness or high strength steel sheet. It is known that the spring back phenomenon is affected by various factors depending on the raw material and processing process. We have conducted analytical evaluations and studies to analyze the springback that occurs according to the cross-sectional shape of the ultra high tensile steel sheet.