• Title/Summary/Keyword: ultra high strength

Search Result 730, Processing Time 0.03 seconds

Development of Automotive Seat Rail Parts for Improving Shape Fixability of Ultra High Strength Steel of 980MPa (980MPa 초고장력 강판의 형상 동결성 향상을 통한 자동차 시트레일 부품 개발)

  • Park, Dong-Hwan;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.137-144
    • /
    • 2016
  • This paper aims to ensure describe the a spring-back prevention technique for improving shape fixability by using an ultra-high strength steel sheet with 980 MPa to develop a lightweight seat rail parts. Ultra-high strength steel gives a potential for considerable weight reduction and a cost-effective way to produce energy efficient vehicles. The influence of a spring-back of seat rail parts on the shape fixability in forming processes was investigated to be solved by an adjustment of the appropriate tool design and process parameters. The computed results for improving shape fixability were in good agreement with the experimental results.

Benefits of Puddling of Fiber Reinforced UHSC for Enhanced Transmission of Column Loads

  • Lee, Joo-Ha;Kim, Gyu-Dong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.75-78
    • /
    • 2005
  • This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete. Compression tests were performed on two slab-column and four isolated column specimens. During the column load tests were performing on the slab-column specimens, the slab loads were also applied to consider actual confinement condition at the slab-column joint. The main parameter investigated was the ' puddling ' of ultra-high-strength-fiber-reinforced concrete. This paper also investigates the effects of some parameters on slab-column specimens and isolated column specimens without the surrounding slab for their ability to transmit axial loads from the ultra-high-strength concrete columns through slab-column connections. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling on the transmission of column loads through slab-column connections are demonstrated.

  • PDF

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

Residual Mechanical Properties of Ultra High Strength Concrete with Aggregate Factor (골재요인에 따른 초고강도 콘크리트의 잔존역학적 특성)

  • Lee, Hee-Kwang;Kim, Gyu-Yong;Lee, Tae-Gyu;Nam, Jeong-Soo;Koo, Kyung-Mo;Youn, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.211-212
    • /
    • 2011
  • It was very important to evaluate concrete experimentally at elevated temperature because concrete was filled with aggregate of concrete volume about 70 percent. Concrete exposure to high temperatures produces changes in its internal structure, for instance loss of its strength and deformation capacity, in extreme cases risking the service life of the structure. The work of this paper is performed to evaluate the thermal behavior of ultra-high strength concrete having different water to cement ratio (strength), fine aggregate to aggregate ratio and maximum size of coarse aggregate. For exposure to 500℃ during 1 hour, residual mechanical properties of the ultra-high strength concrete decreased as the s/a ratio decreases and the maximum size of coarse aggregate increases.

  • PDF

An Experimental Study on the Fluidity and Strength Properties of Multi Component Ultra-High Strength Concrete (다성분계 초고강도콘크리트의 유동특성 및 강도특성에 관한 실험적 연구)

  • Kim, Dong-Pai;Choi, Se-Jin;Lee, Seong-Yeon;Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.449-452
    • /
    • 2006
  • In this study, recently, more highly effective construction materials are needed for a reasonable cause and economical structure system is required as the construction structures become more multi storied, large-sized and diversified. Also, the experiment was not carried out to investigate and analyzed the strength properties and flowability of ultra-high strength accroding to the types of mineral admixtures. Therefore, this is an experimental study to compare and analyze the influence of cementitious materials type on the fluidity and the strength properties of ultra-high strength concrete. For this purpose, it has decided to do the mix proportions of concrete according to the type of cementitious materials (fly ash, blsat furnace slag, silica fume, slag cement) and W/B(23.5, 27.5, 31.5%) has selected. And then we conducted an experiment to find out basic properties of the ultra-high strength concrete such as slump-flow, O-lot and the age of specimens(3, 7, 28, 56days) for compressive strength.

  • PDF

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

Evaluation on Mechanical and Mixing Properties of Ultra-high Strength Concrete with fck=150MPa (150MPa 초고강도 콘크리트의 배합 및 재료역학특성 평가 연구)

  • Kang, Hoon;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Ultra-High Strength Concrete (UHSC) demands a clear presentation of its mechanical properties, as distinct from normal strength concrete, and an evaluation of the serviceability of high-rise buildings that use ultra-high strength concrete. Ultra-high strength concrete fck=150MPa was manufactured with pre-mix cement, and an experimental study was conducted to evaluate the mixing properties and compressive strength, with the major variables being unit cement contents, water-binder ratio, and type of pre-mix cement. The test result showed that 150MPa concrete requires about 6~7 minutes of mixing time until each of the materials (ordinary Portland cement, silica fume, blast-furnace slag powder and anhydrite) are sufficiently revitalized. The slump flow of fresh concrete was shown to be about 700~800mm with the proper viscosity. The average value of concrete compressive strength was shown to be about 70% in 7 days, 85% in 14 days, and 95% in 28 days, for 56 days of concrete material age.

Mixing and Strength Properties of 150MPa Ultra High Strength Concrete (150MPa 초고강도 콘크리트 배합 및 강도발현 특성)

  • Ahn, Jong-Mun;Kang, Hoon;Kim, Jong-Keun;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.373-376
    • /
    • 2008
  • Ultra High Strength Concrete(UHSC) is necessary a clear presentation about mechanical property that is different from normal strength concrete and an evaluation of serviceability of high rise building which is used ultra high strength concrete. To mixing ultra high strength concrete with $f_{ck}$=150MPa pre-mix cement were manufactured and experimental study were conducted to evaluated on the mixing properties and compressive strength with major variables as unit cement contents, water-binder ratio and type of pre-mix cement. As a test result, it is shown that the concrete mixing time is required about 5$^{\sim}$6 minute untill the each materials(ordinary portland cement, silica fume, blast-furnace slag powder and anhydrite) are revitalized enough. A slump flow of fresh concrete are shown about 700$^{\sim}$750mm with proper viscosity. And average value of concrete compressive strength are shown about 77% in 7days, 87% in 14days and 102% in 56days for 28days of concrete material age. From this experimental study, a proper mixture proportion of pre-mix cement are recommended about 54$^{\sim}$59% OPC, 25$^{\sim}$30% blast-furnace slag powder and 10$^{\sim}$15% silica fume for mix the ultra high strength concrete with $f_{ck}$=150MPa.

  • PDF

Multi-objective Optimization to Reduce Wrinkle & Thinning in Sheet Metal Forming of Ultra High Strength Steel (1.2GPa) (1.2GPa 강판의 판재성형에서 주름 및 성형성 향상을 위한 다중 목적함수 최적 설계)

  • Lee, Y.S.;Kwon, S.H.;Kim, H.L.;Kim, S.W.;Jung, C.Y.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.295-300
    • /
    • 2016
  • Recently, Ultra High Strength Steel (UHSS) sheet metal has been widely used to improve lightweight structures in the automobile industry. Because UHSS sheets have high strength but low elongation, it is difficult to control winkle and thinning for complex shaped products. The draw beads on die surface were introduced in this study to reduce wrinkle and thinning. The positions and strength values of draw beads were selected as design variables and optimized using finite element analysis. The beads positions and strength of a mold for B-pillar part were designed with the proposed optimization method. The accuracy of die design from optimization was verified by comparing with the results from 3-D scanned geometry.

An Experimental Study on the Spalling Properties of Ultra High Strength Concrete with PP Fiber (초고강도 콘크리트의 섬유혼입률에 따른 폭렬특성에 관한 실험적 연구)

  • Lee, Tae-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.65-68
    • /
    • 2011
  • High strength concrete(HSC) has been mainly used in large SOC structures. HSC have superior property as well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling in concrete front surface near the source of fire occurs serious problem in structural safety. It is reported that spalling is caused by the vapor pressure under fire and polypropylene(PP) fiber has an important role in protecting from spalling. The spalling properties of ultra high strength concrete specimens with various contents of PP fiber were investigated in this study. In results, the content of PP fiber for spalling protection increases over 0.2 vol.% as the concrete strength increases to 120 MPa.